WWW.KNIGA.LIB-I.RU
БЕСПЛАТНАЯ  ИНТЕРНЕТ  БИБЛИОТЕКА - Онлайн материалы
 

«Чарльз Сейфе Ноль: биография опасной идеи Текст предоставлен правообладателем. Сейфе, Чарльз Ноль: биография опасной идеи : ...»

Чарльз Сейфе

Ноль: биография опасной идеи

Текст предоставлен правообладателем.

http://www.litres.ru/pages/biblio_book/?art=6714149

Сейфе, Чарльз Ноль: биография опасной идеи : АСТ; Москва; 2014

ISBN 978-5-17-083294-1

Аннотация

Эта книга – история цифры 0, одного из самых необычных изобретений человечества.

Споры вокруг этого невинного с виду круглого значка потрясали самые основы науки и

религии, не раз приводили к войнам. Легендарные мыслители, от Пифагора до Эйнштейна,

пытались разгадать тайну ноля. Древние календари и последние достижения астрофизики, вавилонские глиняные таблички и поиски «теории всего» – обо всем этом в книге «Ноль:

биография опасной идеи». Это книга для каждого, кого интересует история математики и культуры, передовые идеи современной науки.

Ч. Сейфе. «Ноль: биография опасной идеи»

Содержание Глава 0 5 Глава 1 6 Происхождение понятия «ноль» 6 Жизнь без ноля 7 Рождение ноля 11 Устрашающие свойства пустоты 16 Глава 2 19 Запад отвергает ноль 19 Происхождение греческой философии чисел 20 Бесконечность, пустота и Запад 29 Свидания вслепую 39 Конец ознакомительного фрагмента. 40 Ч. Сейфе. «Ноль: биография опасной идеи»

Чарльз Сейфе Ноль: биография опасной идеи Charles Seife Zero: The Biography of a Dangerous Idea Перевод с английского Александры Александровой Печатается с разрешения автора, издательства Viking, a division of Penguin Group (USA) Inc. и литературного агентства Andrew Nurnberg.



© Charles Seife, 2000 © Перевод. А. Александрова, 2013 © Издание на русском языке AST Publishers, 2014 Ч. Сейфе. «Ноль: биография опасной идеи»

Глава 0 Утрата силы Ноль поразил американский корабль «Йорктаун», словно торпеда. 21 сентября 1997 года, патрулируя побережье Виргинии, невероятно дорогой ракетный крейсер внезапно содрогнулся и остановился. «Йорктаун» был мертв. Военные корабли строятся так, чтобы выдержать взрыв мощной мины. Хотя «Йорктаун» был хорошо защищен от самого разнообразного оружия, никто не подумал защитить его от ноля. Это была трагическая ошибка.

На компьютеры «Йорктауна» только что поставили новую программу, управляющую двигателями. К несчастью, никто не заметил бомбы, скрывавшейся в программном коде, – ноля, который инженеры должны были удалить. Ноль остался скрытым до тех пор, пока программа не извлекла его из памяти и не задохнулась.

Когда компьютерная система «Йорктауна» попыталась поделить на ноль, двигатели мощностью восемьдесят тысяч лошадиных сил стали бесполезны. Потребовалось почти три часа, чтобы подключить аварийную систему управления, и «Йорктаун» еле дотащился до порта. Инженеры потратили два дня, избавляясь от ноля, ремонтируя двигатели и возвращая «Йорктаун» в боеспособное состояние.

Никакое другое число не может нанести такой урон. Отказ компьютеров, такой, который поразил «Йорктаун», – всего лишь бледная тень могущества ноля. Культуры вооружались против ноля, философы сдавались под его влиянием, потому что ноль отличен от всех других чисел. Он позволяет бросить взгляд на невыразимое и бесконечное. Поэтому-то его боялись, ненавидели, ставили вне закона.

Здесь рассказывается история ноля – его рождения в древности, роста и процветания на Востоке, борьбы за признание в Европе, при шествия на Запад и вечной угрозы современной физике. Это история людей, которые сражались за смысл этого таинственного числа, – ученых и мистиков, исследователей и церковников, каждый из которых пытался понять ноль.





Это история попыток западного мира безуспешно (а иногда и насильственно) заслониться от восточной идеи ноля. И это история парадоксов, созданных невинным с виду числом, потрясающим самые блестящие умы даже нашего столетия и угрожающих повредить саму систему научной мысли.

Ноль могуществен, потому что он – близнец бесконечности. Они равны и противоположны, как инь и ян. Они одинаково парадоксальны и одинаково смущают. Самые главные вопросы в науке и в религии касаются небытия и вечности, пустоты и беспредельности, ноля и бесконечности. Споры насчет ноля были сражениями, потрясавшими основы философии, естественных наук, математики и религии. За каждым решением кроются ноль и бесконечность.

Ноль был причиной битвы между Востоком и Западом. Ноль был в центре борьбы между религией и наукой. Ноль стал языком природы и самым важным инструментом математики. И еще он – самая загадочная проблема физики: темная сердцевина черной дыры и яркая вспышка Большого взрыва появились из тщетных попыток нанести нолю поражение.

На протяжении всей своей истории, несмотря на отрицание и изгнание, ноль всегда побеждал тех, кто ему противостоял. Человечеству никогда не удавалось заставить ноль покориться его философам. Вместо этого ноль формировал взгляды человека на Вселенную и на Бога.

Ч. Сейфе. «Ноль: биография опасной идеи»

–  –  –

История ноля – история очень древняя. Ее корни уходят к началу математики, за тысячи лет до появления первой цивилизации, задолго до того, как люди научились читать и писать.

Однако каким бы естественным ни казалось нам понятие ноля сегодня, для древнего человека он был чуждой – и пугающей – идеей. Это была концепция, возникшая в Плодородном полумесяце (примерно территория современного Ирака) за несколько столетий до рождения Христа; ноль не только олицетворял первобытную бездну, он также обладал опасными математическими свойствами. Ноль обладал властью разрушить систему логики.

Начала математической мысли могут быть найдены в желании сосчитать овец, в потребности вести учет собственности и течения времени. Ни одна из этих задач не требовала использования ноля; цивилизация прекрасно функционировала за столетия до его открытия. Понятие ноля было настолько непривлекательно для некоторых культур, что они предпочитали жить без него.

Перевод Т. Я. Елизаренковой (здесь и далее – прим. науч. ред., если не оговорено иное).

Ч. Сейфе. «Ноль: биография опасной идеи»

–  –  –

Современному человеку трудно представить себе жизнь без ноля, как трудно представить жизнь без чисел 7 или 31. Тем не менее было время, когда ноля не существовало – как не существовало и этих чисел. Дело было еще в доисторические времена, так что палеонтологам пришлось собирать по кусочкам историю рождения математики, изучая осколки камней и кости. По этим фрагментам они узнали, что математики каменного века были более неприхотливы, чем современные. Вместо грифельной доски они использовали… волков.

Ключ к математике каменного века был найден при раскопках в Чехословакии в конце 1930-х годов археологом Карлом Абсаломом. Он нашел волчью кость с серией насечек; кости было тридцать тысяч лет. Никто не знает, использовал ли ее первобытный человек, чтобы сосчитать, сколько он убил оленей, сколько рисунков сделал или сколько дней не мылся, однако совершенно ясно, что древние люди что-то подсчитывали.

Волчья кость была в каменном веке эквивалентом суперкомпьютера. Предки нашего первобытного математика не могли сосчитать даже до двух, а уж ноль им точно не требовался. На самых начальных этапах люди могли различать только «один» и «много». Первобытный человек владел одним копьем или несколькими; он съедал одну убитую ящерицу или многих. Не было никакой возможности показать другие количества между «один»

и «много». С течением времени примитивные языки развились достаточно, чтобы различать «один», «два» и «много», а потом и «один», «два», «три» и «много», но названий для больших чисел еще не было. Некоторые языки все еще имеют такое ограничение. Индейцы сирионо в Боливии и бразильские индейцы яномамо не имеют названий для чисел больше трех, вместо этого они говорят «несколько» или «много».

Сама природа чисел такова, что их можно складывать друг с другом, получая новые, так что система не остановилась на трех. Через некоторое время умные члены племени начали нанизывать числа-слова в ряд, чтобы получить большие числа. Современные языки народностей бакайри и бороро в Бразилии демонстрируют этот процесс в действии. Их система чисел выглядит так: «один», «два», «два и один», «два и два», «два и два и один» и так далее. Эти люди считают двойками. Математики называют такую систему бинарной.

Немногие народы считают двойками, как бакайри и бороро. Старая волчья кость несет на себе более типичную древнюю систему счета. Кость имеет пятьдесят пять маленьких насечек, объединенных в группы по пять; после первых двадцати пяти отметок имеется еще одна насечка. Очень похоже на то, что наш первобытный человек считал пятерками, а потом сгруппировал пятерки по пять. В этом есть здравый смысл. Гораздо быстрее подсчитывать значки, объединенные в группы, чем пересчитывать их по одному. Современные математики сказали бы, что резчик по волчьей кости использовал основанную на цифре 5, или пятеричную, систему счета.

Но почему именно на цифре 5? В конце концов это произвольное решение. Если бы первобытный человек объединил значки в группы по четыре и считал более крупными единицами, равными 16, или в группы по шесть и равными 36, его система счета работала бы также хорошо. Группировка не влияет на число насечек на кости, она отражается только на том, как резчик их объединил. Окончательный ответ был бы получен один и тот же, как Ч. Сейфе. «Ноль: биография опасной идеи»

бы ни считать значки. Однако наш первобытный человек предпочел считать группами по пять, а не по четыре, и такое предпочтение разделяли люди по всему миру. Природа случайно дала человеку по пять пальцев на каждой руке, и из-за этой случайности пятерка оказалась излюбленной основой системы счета во многих культурах. Древние греки, например, использовали термин «пятерение» для описания процесса подсчета.

Даже в южноамериканских двоичных системах счета лингвисты усматривают начала пятеричной системы. Другое название на языке бороро для числа «два и два и один» – «это моя рука целиком». Ясно, что древние люди предпочитали считать, используя части своего тела, и «пять» (одна рука), «десять» (две руки) и «двадцать» (обе руки и обе ноги) были для этого излюбленными объектами. Английские слова eleven и twelve произошли, вероятно, от one over (ten) и two over (ten), «один сверх (десяти)» и «два сверх (десяти)», как, по-видимому, и русские «одиннадцать» и «двенадцать» произошли от «один над десятью» и «два над десятью». Английские «тринадцать», «четырнадцать», «пятнадцать» и так далее, скорее всего, сокращения фраз «три и десять», «четыре и десять», «пять и десять». Исходя из этого, лингвисты заключают, что «десять» являлось базовой единицей в германских праязыках, от которых произошел английский, поэтому люди использовали основанную на десятке числовую систему. С другой стороны, по-французски «восемьдесят» – это quatre-vingts, то есть «четыре двадцатки», а «девяносто» – quatre-vingt-dix («четыре двадцатки и десять»).

Может показаться, что люди, жившие там, где теперь расположена Франция, использовали как основу число 20 – это была двадцатеричная система. Такие числа, как 7 и 31, принадлежат ко всем системам – и пятеричной, и десятеричной, и двадцатеричной. Однако ни одна из них не имела названия для ноля. Такого понятия просто не существовало.

Ведь нет нужды пасти ноль овец или пересчитывать ноль цыплят. Вместо того чтобы сказать: «У нас ноль бананов», торговец скажет: «У нас нет бананов». Не требуется цифры для обозначения отсутствия чего-нибудь, так что никому и не приходило в голову придумывать для нее обозначение. Поэтому люди так долго и обходились без ноля. Он просто не был нужен, а потому не возникал.

На самом деле знание о числах вообще было большим достижением в доисторические времена. Простая способность считать рассматривалась как столь же мистический и сверхъестественный талант, как наложение заклятий или знание имен богов. В египетской «Книге мертвых» говорится, что когда душу умершего расспрашивает Акен, перевозчик, переправляющий души умерших через реку в потусторонний мир, он отказывается брать в свою лодку того, «кто не знает числа своих пальцев». Душа должна пересчитать пальцы, чтобы удовлетворить перевозчика. (А вот греческий перевозчик в царство мертвых хотел получить плату, поэтому под язык мертвому человеку клали монету.) Хотя умение считать в древнем мире было редкостью, числа и основные правила счета всегда возникали раньше письменности. Когда у ранних цивилизаций появлялась потребность делать на глиняных табличках оттиски тростинкой, высекать знаки на камне или наносить их чернилами на пергамент или папирус, система чисел бывала уже хорошо развитой.

Трансформация устной системы счета в письменную была делом простым: людям нужно было только изобрести метод кодирования, чтобы писцы могли сохранять числа в более долговечной форме. (Некоторые общества даже придумали, как это делать, до того, как научились писать. Неграмотные инки, например, использовали «кипу» – связки разноцветных веревочек с узлами, чтобы сохранять результаты подсчетов.) Первые писцы записывали числа так, как это соответствовало их системе счета, и делали это как можно более точно. Со времен первобытных людей общество развилось; вместо того, чтобы снова и снова наносить группы насечек на кость, писцы изобрели символы для каждого типа групп. При пятеричной системе писец мог одним значком обозначить едиЧ. Сейфе. «Ноль: биография опасной идеи»

ницу, другим значком – группу из пяти единиц, третьим – число 25 (пять групп по пять) и так далее.

Именно так поступили египтяне. Более пяти тысяч лет назад, еще до эры пирамид, древние жители Египта придумали систему изображений для своей десятеричной системы, где каждая цифра изображалась рисунком. Одна вертикальная черточка означала единицу, изображение пяточной кости – десять, изогнутый силок – сто, и так далее. Чтобы записать число по такой схеме, писцу нужно было только изобразить группы этих символов. Вместо того чтобы наносить 123 насечки для изображения числа 123, достаточно было изобразить шесть символов: один силок, две пятки и три вертикальных черточки. Таков был типичный способ математических записей в античности. Как и большинство других цивилизаций, Египет не обладал нолем и не нуждался в нем.

Однако древние египтяне были весьма искусными математиками. Они умело вели астрономические наблюдения и следили за временем, а это означало, что им была нужна развитая математика – из-за переменчивой природы календаря.

Создание надежного календаря было проблемой для большинства древних цивилизаций, потому что они обычно начинали с календаря лунного: длительность месяца определялась как промежуток между двумя полнолуниями. Это был естественный выбор: убывание и рост луны на небе трудно не заметить, и это дает удобный способ отмечать периодически повторяющиеся циклы. Однако длительность лунного месяца – между двадцатью девятью и тридцатью днями. Как бы вы их ни располагали, двенадцать лунных месяцев дают 354 дня – примерно на одиннадцать меньше, чем длится солнечный год. Тринадцать лунных месяцев дают девятнадцать лишних дней. Поскольку именно солнечный, а не лунный год определяет время сева и жатвы, сезоны смещаются, если пользоваться неуточненным лунным годом.

Корректировка лунного календаря – дело сложное. Некоторые современные страны, такие как Израиль и Саудовская Аравия, все еще пользуются модифицированным лунным календарем, но шесть тысяч лет назад египтяне пришли к лучшему решению. Они нашли более простой способ и создали календарь, верно указывавший сезоны на протяжении многих лет. Вместо того чтобы следить за течением времени, наблюдая за луной, они использовали солнце, как это делает большинство современных народов.

Египетский календарь состоял из двенадцати месяцев, как и лунный, но каждый месяц длился тридцать дней. (Поскольку они пользовались десятеричной системой, неделя у египтян – декада – длилась десять дней.) В конце года календарь включал пять дополнительных дней, что в сумме давало 365 дней в году. Это предок нашего собственного календаря; египетскую систему восприняли греки, а потом Рим, где она была усовершенствована введением високосных годов. Так возник стандартный календарь западного мира. Однако, поскольку у египтян, греков и римлян не было ноля, не имеет ноля и западный календарь – недостаток, который через тысячелетия создал много проблем.

Придуманная египтянами новинка – солнечный календарь – была прорывом в знании, но они оставили и более важный след в истории: изобрели геометрию. Даже не имея ноля, египтяне скоро стали мастерами в математике. Им пришлось ими стать из-за грозной реки: Нил каждый год выходил из берегов и затоплял дельту. Это было благом – разлив приносил на поля богатый аллювиальный ил, делая долину Нила самой богатой земледельческой областью древнего мира. Однако река уничтожала межи, стирая все границы между полями, и крестьяне не знали, какие участки им возделывать. (Египтяне очень серьезно относились к правам собственности: согласно Книге мертвых, умерший должен был поклясться богам, что не обманывал соседа, захватив его землю, иначе за прегрешение сердце виновного скармливалось страшному чудовищу, именуемому Пожирающим. Захват чужой земли считался в Египте не менее тяжким преступлением, чем нарушение клятвы, убийство или мастурбация в храме.) Ч. Сейфе. «Ноль: биография опасной идеи»

Древние фараоны назначали землемеров для оценки ущерба и восстановления разметки полей – так и родилась геометрия. Землемеры, или натягиватели веревок (называвшиеся так по своим измерительным приспособлениям: веревкам с узлами, благодаря которым можно было определить прямой угол), со временем научились определять площадь участков земли, разделяя их на прямоугольники и треугольники. Египтяне также научились измерять объемы объектов – таких, как пирамиды. Египетские математики были знамениты по всему Средиземноморью; вероятно, древнегреческие геометры – Фалес и Пифагор – учились в Египте. Однако несмотря на блестящие достижения, ноль в Египте так и не появился.

Причина была отчасти в том, что египтяне интересовались только практической стороной дела. Они так и не пошли дальше измерения объемов и подсчета дней и часов.

Математика не использовалась для чего-либо отвлеченного, если не считать астрологии. В результате даже лучшие египетские математики не могли использовать принципы геометрии там, где это не было связано с реальным миром: они не превратили свою математическую систему в абстрактную систему логики. Они также не соотносили математику с философией. Греки отличались от египтян тем, что пользовались абстракциями и философскими категориями; они довели математику до ее верхней точки в древности. Однако не греки открыли ноль. Ноль пришел с Востока, а не с Запада.

Ч. Сейфе. «Ноль: биография опасной идеи»

–  –  –

Греки понимали математику лучше египтян. Овладев египетским искусством геометрии, они быстро превзошли своих учителей.

Сначала греческая система чисел была очень сходна с египетской. Греки тоже использовали как основу число 10, и в том, как две культуры записывали числа, разница была невелика: вместо рисунков, как египтяне, греки для обозначения чисел использовали буквы. Буква «» («эта») обозначала hekaton – «сто»; «М» («мю») – myriory – «десять тысяч» («мириада» – самый большой разряд в греческой системе). У греков был также символ для числа 5, что указывало на смешение пятеричной и десятеричной систем, в целом же греческая и египетская системы записи чисел были почти одинаковы – на некоторое время.

Потом греки переросли этот примитивный способ записи чисел и создали более изощренную систему.

Рис. 1. Изображение чисел в различных культурах:

Вместо того чтобы использовать две черточки для обозначения цифры 2 или три «H»

для обозначения 300, как это делалось бы в «египетском» стиле, новая греческая система, появившаяся около 500 года до н. э., использовала отдельные значки для изображения 2, 3, 300 и многих других чисел (рис. 1). Таким образом, греки избавлялись от повторения цифр.

Например, запись числа 87 в египетской системе требовала бы пятнадцать символов: восемь пяток и семь вертикальных черточек. В новой греческой системе требовалось всего два символа: для 80 и для 7. (Римская система, сменившая греческую, была шагом назад; запись римскими цифрами – LXXXVII – потребовала бы семи символов с несколькими повторениями.) Хотя греческая система была изощренней египетской, она не обеспечивала самого прогрессивного способа записи чисел в древнем мире. Эта честь принадлежит другому восточному изобретению: вавилонскому способу счета. Благодаря этой системе на Востоке, в Плодородном полумесяце, появился ноль.

Данциг Т. Числа – язык науки / Пер. Ю. Каратассо. М.: Техносфера, 2008 Ч. Сейфе. «Ноль: биография опасной идеи»

На первый взгляд, вавилонская система представляется извращенной. Во-первых, она шестидесятерична – имеет в основе число 60. Такой выбор кажется странным, особенно если учесть, что большинство человеческих обществ выбирали в этом качестве числа 5, 10 или 20.

Во-вторых, вавилоняне использовали только два значка для изображения чисел: клинышек, обозначавший единицу, и двойной клинышек, обозначавший десять. Группы этих значков, объединенных в семейства, содержащие 59 или меньше значков, были базовыми символами системы чисел, так же, как греческая система использовала буквы, а египетская – рисунки.

Однако действительно странной особенностью вавилонской системы было то, что вместо использования разных символов для каждого числа, как в египетской и греческой системах, каждый символ мог изображать множество разных чисел. Единственный клинышек, например, мог изображать 1, 60, 3600 и сколько угодно других чисел.

Каким бы странным это ни казалось на современный взгляд, для древних людей это было вполне осмысленно: таков был эквивалент компьютерного кода бронзового века. Вавилоняне, как и представители многих других культур, изобрели приспособления, помогавшие им в счете. Наиболее знаменит из них абак. Известный как «соробан» в Японии, «цзесуан-пан» в Китае, «счеты» в России, «кулба» в Турции, «хореб» в Армении и под множеством других названий в разных культурах, абак использует перемещающиеся камешки для обозначения количества. (Слова «калькулировать», «калькулюс» и «кальций» происходят от латинского слова calculus – камешек.) Сложение чисел на абаке столь же просто, как перемещение камешков вверх и вниз.

Камешки в разных колонках имеют разную цену и, манипулируя ими, умелый пользователь может быстро складывать большие числа. Когда подсчет закончен, все, что нужно сделать пользователю, – это посмотреть на окончательное расположение камешков и перевести увиденное в число – довольно простая операция.

Вавилонская система походила на абак, символически изображенный на глиняной табличке. Каждая группа символов соответствовала определенному числу камешков, двигавшихся на абаке, и как каждая колонка абака, каждая группа имела собственное, отличное от других значение, в зависимости от положения. В этом смысле вавилонская система не отличалась от той, которой мы пользуемся сегодня. Каждая единица в числе 111 имеет особое значение: справа налево – это 1, 10 и 100 соответственно. Подобным же образом символ в трех разных положениях в числе означал «один», «шестьдесят» или «три тысячи шестьсот». Все было, как на абаке, за исключением единственной проблемы. Как вавилонянин записал бы число 60? Цифру 1 написать было легко: ; к несчастью, 60 тоже записывалось как – с тем единственным отличием, что значок должен стоять на втором месте, а не на первом. На абаке легко определить, какое число представлено. Один камешек в первой колонке легко отличить от одного камешка во второй колонке. Этого нельзя сказать о записи чисел. Вавилоняне не имели способа определить, в какой колонке стоит написанный символ; мог представлять и 1, и 60, и 3600. С числами, в которые входило несколько значков, дело обстояло еще хуже: это могло быть 61, 3601, 3660 и больше.

Решением этой проблемы был ноль. Около 300 года до н. э. вавилоняне начали использовать два наклонных клинышка для обозначения пустого места: пустой колонки абака. Символ-заполнитель позволял с легкостью определить, к какому разряду принадлежит значащий символ. До появления ноля значок мог означать 61 или 3601; благодаря Ч. Сейфе. «Ноль: биография опасной идеи»

(рис. 2). Ноль родился использованию ноля он означал 61; 3601 обозначался как из потребности дать каждой последовательности вавилонских цифр единственное постоянное значение.

Хотя ноль был полезен, это был всего лишь символ-заполнитель. Он обозначал только пустое место в колонке абака – той колонке, где все камешки на дне. Он только обеспечивал, что все цифры стоят на правильном месте; собственной числовой ценности он не имел. В конце концов, 000 002,148 означает в точности то же, что 2,148. Ноль в ряду цифр получает значение, зависящее от какой-то другой цифры слева от него. Сам по себе ноль ничего не значит. Ноль был цифрой, а не числом. Он не имел величины.

Рис. 2. Вавилонские цифры

Величина числа определяется его положением на числовой оси по сравнению с другими числами. Например, число 2 идет до числа 3 и после числа 1; ничто другое значения не имеет. Однако ноль сначала не занимал места на числовой оси, это был просто символ, не имевший места в иерархии чисел. Даже сегодня мы иногда воспринимаем ноль как «нечисло», несмотря на то, что все мы знаем, что он обладает собственной числовой значимостью; мы используем цифру 0 как символ-заполнитель, не связывая его с числом ноль.

Ноль следует за цифрой 9, а не перед 1, где следовало бы. Не имеет значения, где находится символ-заполнитель, он может располагаться где угодно на числовой оси. Однако сегодня всем известно, что на самом деле ноль не может находиться где угодно, потому что имеет определенное собственное численное значение. Это число, которое отделяет положительные числа от отрицательных. Он является четным целым числом, предшествующим единице. Ноль должен находиться на своем законном месте – перед плюс единицей и после минус единицы. Никакое другое его положение не имеет смысла. Тем не менее ноль располагается в конце ряда на компьютерной клавиатуре и внизу экрана телефона, потому что мы всегда начинаем считать с единицы.

Единица представляется наиболее подходящей для начала счета, но это заставляет нас помещать ноль на неестественное для него место. Для других культур, как, например, майя, живших в Мексике и в Центральной Америке, начало счета с единицы вовсе не казалось рациональным. На самом деле майя имели систему чисел и календарь более логичные, чем наши. Как и у вавилонян, в их системе величина числа зависела от места, на котором стоит обозначающая его цифра. Единственным существенным отличием служило то, что вместо 60 в качестве основы майя использовали 20, с остатками более ранней десятеричной системы. Как и вавилонянам, им требовался ноль, чтобы определять, что какая цифра значит. Для пущего интереса майя пользовались цифрами двух типов: простой основывался на точках и черточках, более сложный – на глифах, гротескных лицах. Нетрудно воочию убедиться, насколько странно сейчас выглядят цифры майя (рис. 3).

Ч. Сейфе. «Ноль: биография опасной идеи»

Рис. 3: Цифры майя

Как и египтяне, майя создали превосходный солнечный календарь. Поскольку их система счета основывалась на числе 20, майя, естественно, разделили год на 18 месяцев, по 20 дней каждый, что в сумме давало 360 дней. Особый период из пяти дней в конце года, называвшийся «уайеб», доводил общее количество до 365. В отличие от египтян, впрочем, майя включали в свою систему счета ноль, так что делали очевидную вещь: начинали отсчет дней с ноля. Первый день месяца – Зип, например, обычно именовался «установление» или «посадка» Зип. Следующим днем было 1 Зип, за ним следовало 2 Зип и так далее, пока не доходило до 19 Зип.

Потом наступала «посадка» Зоц – 0 Зоц; дальше следовало 1 Зоц и так далее. Каждый месяц имел 20 дней, имевших номера от 0 до 19, а не от 1 до 20, как мы делаем сегодня.

Ч. Сейфе. «Ноль: биография опасной идеи»

(Майяский календарь был удивительно сложен. Помимо солнечного календаря, существовал ритуальный, состоявший из двадцати недель, по тринадцать дней каждая. В соединении с солнечным годом он давал календарный круг, в котором каждый день 52-летнего цикла имел собственное название.) Майяская система была более осмысленной, чем западная. Поскольку западный календарь был создан во времена, когда ноля не существовало, мы не имеем ни нулевого дня, ни нулевого года. Это, казалось бы, незначительное упущение привело к огромным трудностям:

вызвало разногласия по поводу начала тысячелетия. Майя никогда не стали бы спорить о том, является ли первым годом XXI века 2000 или 2001 год. Однако наш календарь создавали не майя, это были египтяне, а позже римляне. По этой причине мы оказались с неудобным, лишенным ноля календарем.

Отсутствие ноля у египтян повредило и календарю, и будущему западной математики.

На самом деле египетская цивилизация повредила математике не в единственном отношении. Будущие трудности оказались связаны не только с отсутствием ноля. У египтян был чрезвычайно громоздкий способ обращаться с дробями. Они не думали о 3/4 как об отношении трех к четырем, как мы делаем сегодня; они рассматривали 3/4 как сумму 1/2 и 1/4. За единственным исключением – 2/3 – все египетские дроби записывались как суммы чисел, имеющих вид 1/n (где n – натуральное число), – так называемые дробные единицы. Длинные цепочки этих дробных единиц делали чрезвычайно трудными манипуляции с дробями в египетской (и греческой) системе счисления.

Наличие ноля делает эту громоздкую систему устаревшей. В вавилонской системе, имевшей ноль, записывать дроби было легко. Как мы можем заменить 1/2 выражением 0,5, а /4 – 0,75, вавилоняне использовали выражения 0,30 для 1/2 и 0,45 для 3/4 (на самом деле вавилонская шестидесятеричная система даже лучше подходила для записи дробей, чем наша современная десятеричная).

К несчастью, греки и римляне настолько ненавидели ноль, что держались за запись по египетскому образцу и не переходили на вавилонскую систему, несмотря на то, что пользоваться последней легче.

Для сложных вычислений, какие, например, нужны для астрономических таблиц, греческая система была такой громоздкой, что математики преобразовывали дробные единицы в вавилонскую шестидесятеричную систему, выполняли вычисления, а затем переводили ответ обратно на греческий лад. Они могли бы избавить себя от многих трудоемких действий (мы все знаем, как надоедает переводить дроби из одного вида в другой). Однако греки так презирали ноль, что отказывались использовать его в своих записях, несмотря на то, что видели, насколько он полезен. Причина этого крылась в том, что ноль был опасен.

Ч. Сейфе. «Ноль: биография опасной идеи»

–  –  –

Трудно представить себе, что можно бояться числа. Однако ноль был неразрывно связан с бездной – с пустотой. Людей преследовал изначальный страх перед бездной и хаосом, а также и перед нолем.

Древние народы верили, что до возникновения Вселенной существовали только пустота и хаос. Древние греки утверждали, что сначала матерью всего была тьма, а из тьмы возник хаос. Тьма и хаос породили остальную Вселенную. Еврейские предания о сотворении мира говорят, что земля была в состоянии хаоса и пустоты, пока Бог не пролил свет и не придал ему его свойства. На иврите это выражается так: tohu v’bohu. Роберт Грейвз связывает tohu с Техомотом, доисторическим семитским драконом, свидетелем рождения Вселенной, тело которого стало небом и землей. Bohu связывалось с Бегемотом, знаменитым чудовищем из еврейских легенд. Согласно древнеиндийской традиции, Создатель сбивал масло из хаоса и превратил его в землю, а северный миф рассказывает о том, как открытая бездна покрылась льдом, а из хаоса, порожденного смешением огня и льда, возник первобытный великан. Пустота и беспорядок были изначальным естественным состоянием космоса, и всегда существовал грызущий страх перед тем, что в конце времен беспорядок и бездна воцарятся снова. Ноль олицетворял собой эту бездну.

Однако страх перед нолем коренился глубже, чем страх бездны. Для древних математические свойства ноля были непостижимы, столь же окутаны тайной, как и рождение Вселенной. Причина этого крылась в том, что ноль отличается от всех остальных чисел. В отличие от других цифр в вавилонской системе, нолю никогда не позволялось стоять в одиночку

– и не без основания. Оказавшись сам по себе, ноль ведет себя странно, по крайней мере не так, как остальные числа.

Если прибавить число к самому себе, оно изменится. Один плюс один – уже не один, а два. Два и два дают четыре. А вот ноль плюс ноль есть ноль. Это нарушает основной принцип счисления, называемый аксиомой Архимеда и говорящий, что если прибавлять число к самому себе достаточное количество раз, результат превзойдет по величине любое другое число. (Аксиома Архимеда была сформулирована в терминах площадей; число рассматривалось как разница между двумя неравными площадями.) Ноль же отказывается увеличиваться. Он также отказывается увеличивать любое другое число. Сложите два и ноль, и вы получите два; дело выглядит так, словно вы и не складывали ничего. То же самое происходит и при вычитании. Отнимите ноль от двух, и вы получите два. Ноль не имеет реальности.

Однако это лишенное реальности число угрожает нарушить простейшие математические операции, такие как умножение и деление.

В области чисел умножение означает растяжение – в буквальном смысле слова. Представьте себе, что числовая ось – это резиновая лента с делениями на ней (рис. 4). Умножение на два может рассматриваться как растяжение резиновой ленты вдвое: то деление, которое приходилось на отметку «один», теперь переместилось на «два»; приходившееся на «три» – Старшая Эдда / Пер. А. Корзуна. М.: Худ. лит., 1975.

Ч. Сейфе. «Ноль: биография опасной идеи»

на «шесть». Аналогично умножение на одну вторую сходно с некоторым сжатием резиновой ленты: деление на «два» перемещается на «один», деление на «три» – на «полтора».

Рис. 4. Резиновая лента для умножения Но что происходит при умножении на ноль? Сколько бы раз ни взять ноль, все равно будет ноль, и все деления соберутся на ноле. Резиновая лента порвалась. Вся числовая ось нарушилась.

К несчастью, нет способа обойти этот неприятный факт. Любое число ноль раз – ноль;

это свойство нашей системы счисления. Чтобы в повседневно используемых числах был смысл, они должны обладать тем, что именуется свойством дистрибутивности, что лучше Ч. Сейфе. «Ноль: биография опасной идеи»

всего видно на примере. Представьте себе, что в магазине игрушек мячи продаются по две штуки, а кубики – по три. Соседний магазин игрушек торгует наборами из двух мячей и трех кубиков. Каждая упаковка из двух мячей и каждая упаковка из трех кубиков – такой же один предмет, как и упаковка с набором мячей и кубиков из соседнего магазина. Если быть последовательным, то покупка семи упаковок мячей и семи упаковок кубиков в первом магазине должна быть тем же самым, что и покупка семи наборов во втором. Это и есть свойство дистрибутивности. Используя математическую запись, мы выразили бы это так: 7 2 + 7 3 = 7 (2 + 3). Все получается правильно.

Если же применить это свойство к нолю, получается нечто странное. Мы знаем, что 0 + 0 = 0. Возьмем в качестве примера число 2. 2 + 0 = 2 + (0 + 0); согласно свойству дистрибутивности, мы также знаем, что 2 (0 + 0) – то же самое, что 2 0 + 2 0. Однако это означает, что 2 0 = 2 0 + 2 0. Чем бы ни было 2 0, когда вы прибавляете это число к самому себе, оно остается тем же самым, очень похожим на ноль. На самом деле это он и есть. Если вычесть 2 0 из обеих частей равенства, мы увидим, что 0 = 2 0. Таким образом, что бы вы ни делали, умножение числа на ноль дает ноль. Это зловредное число сжимает числовую ось в точку. Однако сколь бы досадным ни было это свойство, истинная сила ноля делается очевидной при делении, а не умножении.

Если умножение растягивает числовую ось, то деление сжимает ее. Умножьте какоенибудь число на два, и вы растянете резиновую ленту – числовую ось – вдвое; разделите результат на два, и резиновая лента сожмется вдвое, произведя действие, обратное умножению. Производя деление, вы уничтожаете следствие умножения: метка на резиновой ленте, переместившаяся на новое место, возвращается в прежнее положение.

Мы видели, что произошло при умножении числа на ноль: числовая ось была уничтожена. Деление на ноль должно было быть противоположностью умножению на ноль – оно должно было бы восстановить числовую ось. К несчастью, этого не происходит.

В предыдущем примере мы видели, что 2 0 есть 0. Таким образом, чтобы совершить действие, обратное умножению, мы должны предположить, что (2 0) / 0 вернет нас к 2.

Точно так же (3 0) / 0 должно вернуть нас к 3, (4 0) / 0 – к 4… Однако каждое из чисел 2 0, 3 0, 4 0, как мы видели, равно 0, так что (2 0) / 0 = 0 / 0, (3 0) / 0 = 0 / 0, (4 0) / 0 = 0 / 0. Увы, это означает, что 0 / 0 = 2, а также 0 / 0 = 3, 0 / 0 = 4… Это же бессмыслица!

Странные вещи происходят и в том случае, если мы посмотрим на 1 / 0 с другой точки зрения. Умножение на ноль должно произвести действие, обратное делению на ноль, так что 1 / 0 0 должно быть равно 1. Однако мы видели, что любое число, умноженное на ноль, дает ноль. Нет такого числа, которое, умноженное на ноль, давало бы 1, по крайней мере, среди чисел, с которыми мы встречались.

Хуже всего то, что если вы необдуманно разделите на ноль, вы можете разрушить все основы логики и математики. Достаточно всего один раз – один-единственный – разделить на ноль, и это позволит вам математически доказать все что угодно. Вы сможете доказать, что 1 + 1 = 42, а из этого вывести, что Эдгар Гувер был инопланетянином, Уильям Шекспир

– узбеком, и даже что небо – в горошек. (Приложение А поможет вам доказать, что Уинстон Черчилль был морковкой.) Умножение на ноль уничтожает числовую ось. Однако деление на ноль разрушает всю систему математики.

Это простое число обладает большим могуществом. Оно стало самым важным математическим инструментом. Однако благодаря своим странным математическим и философским свойствам ноль пришел в столкновение с фундаментальной западной философией.

Ч. Сейфе. «Ноль: биография опасной идеи»

–  –  –

Ноль вступил в противоречие с одним из центральных принципов западной философии, утверждением, корни которого уходят в нумерологию Пифагора и парадоксы Зенона.

На этом основании покоилась вся греческая философия: пустоты не существует.

Греческая вселенная, созданная Пифагором, Аристотелем и Птолемеем, выжила и после падения греческой цивилизации. В этой вселенной не существует такой вещи, как ничто. Ноля не существует. По этой причине Запад почти два тысячелетия не мог принять ноль. Последствия этого были печальны. Отсутствие ноля препятствовало росту математики, душило новое в науке и попутно вызвало путаницу с календарем. Прежде чем принять ноль, философы Запада должны были разрушить свою вселенную.

Лукреций Кар. О природе вещей / Пер. Ф. Петровского. М.: Худ. лит., 1983.

Ч. Сейфе. «Ноль: биография опасной идеи»

–  –  –

Египтяне, которые изобрели геометрию, не особенно задумывались о математике. Для них это был всего лишь инструмент измерения хода времени и земельных участков. Отношение греков было совсем иным. Для них числа и философия были нераздельны, и к обоим они относились очень серьезно. Греки заходили слишком далеко, когда дело касалось чисел.

В прямом смысле слова.

…Гиппас из Метапонта стоял на палубе, готовясь к смерти. Вокруг него стояли последователи культа, тайного братства, которое он предал. Гиппас раскрыл секрет, который был смертельно опасен для греческого мышления, секрет, который грозил подорвать всю философию братства. За это сам великий Пифагор приговорил его к смерти через утопление. Для защиты своей философии – нумерологии – братство готово было убивать. Однако как ни смертелен был секрет, раскрытый Гиппасом, он был незначителен по сравнению с опасностями, которые таил ноль!

Возглавлял культ Пифагор, древний радикалист. Согласно большинству источников, он родился в VI веке до н. э. на Самосе, греческом острове у побережья современной Турции, знаменитом своим храмом Геры и великолепным вином. Даже по стандартам суеверных древних греков взгляды Пифагора были эксцентричны. Он был твердо убежден, что он – реинкарнация Эуфорба, троянского героя. Это помогало Пифагору верить в то, что все души

– включая души животных – возрождаются после смерти в других телах. По этой причине он придерживался вегетарианства. Бобы, впрочем, находились под запретом, поскольку они вызывают скопление газов и по виду напоминают гениталии.

Пифагор мог бы быть древним последователем нью-эйдж; он был красноречивым оратором, признанным ученым и харизматичным учителем. Говорят, он написал конституцию для живущих в Италии греков. Ученики стекались к нему, и он скоро приобрел множество последователей, которые хотели учиться у мастера.

Пифагорейцы жили согласно учению своего вождя. Среди прочего они верили, что заниматься любовью лучше всего зимой, а не летом; что все болезни вызываются несварением; что следует есть сырую пищу и пить только воду; что не следует носить одежду из шерсти. Однако в центре их философии находился самый важный принцип: все есть число.

Греки унаследовали числа от геометров-египтян. В результате в греческой математике не было существенного различия между фигурами и числами; для греческих философов-математиков они были примерно одним и тем же. Даже сегодня у нас имеются, благодаря их значимости, квадраты целых чисел и треугольные числа (рис. 5). В те дни доказать математическую теорему часто было все равно, что нарисовать прекрасную картину;

инструментами древнегреческих математиков были не карандаш и бумага, это были линейка и циркуль. Для Пифагора связь между фигурами и числами была глубокой и таинственной.

Каждое число-форма имело скрытое значение, а самые красивые из них были священны.

Греческое слово, обозначающее пропорцию – logos, – имеет также значение «слово». Приведенный перевод даже более точен, чем традиционный (прим. авт.).

Ч. Сейфе. «Ноль: биография опасной идеи»

Рис. 5. Квадраты чисел и треугольные числа

Мистическим символом пифагорейского культа была, естественно, «число-форма»:

пентаграмма, пятилучевая звезда. Эта простая фигура – взгляд в бесконечность. В сердцевине линий звезды лежит пятиугольник. Соединение углов пятиугольника прямыми создает маленькую повернутую вверх ногами пятилучевую звезду, в своих пропорциях точно такую же, как исходная. Эта звезда в свою очередь содержит еще меньший пятиугольник, а тот – еще меньшую звезду с ее крохотным пятиугольником и так далее (рис. 6). Как это ни любопытно, для пифагорейцев самой важной особенностью пентаграммы было не это самоповторение, но нечто скрытое среди прямых, составляющих звезду: золотое сечение, суть пифагорейского взгляда на Вселенную.

Ч. Сейфе. «Ноль: биография опасной идеи»

Рис. 6. Пентаграмма Важность золотого сечения связана с открытием Пифагора, о котором теперь редко вспоминают.

В современной школе дети узнают о Пифагоре по его знаменитой теореме: квадрат гипотенузы равен сумме квадратов катетов. Однако на самом деле это было давно известно.

Такое открытие было сделано более чем за тысячу лет до Пифагора. В Древней Греции Пифагор был знаменит другим открытием: музыкальной гаммой.

Рис. 7. Мистический монохорд

Однажды, говорит легенда, Пифагор играл с монохордом – коробкой с натянутой на ней струной (рис. 7). Передвигая туда-сюда подвижную подставку, Пифагор менял звуки, которые издавал инструмент. Он быстро обнаружил, что струна ведет себя странно, но предсказуемо. Когда вы дергаете струну без подставки, вы получаете чистую ноту, тон, известный как основной.

Перемещение подставки, на которую опирается струна, меняет высоту издаваемого звука. Когда вы помещаете подставку точно в середине монохорда, так, что она касается струны в центре, каждая половина струны издает одну и ту же ноту: тон, ровно на октаву выше основного. Незначительное перемещение подставки может разделить струну так, что на одну часть придется три пятых длины струны, а на другую – две пятых; в этом случае, как заметил Пифагор, отрезки струны издают две ноты, образующие вверх и вниз от основного тона чистую квинту, которая, как считалось, выражает самое мощное и запоминающееся музыкальное переживание. Другие соотношения дают другие тона, которые могут успокаивать или беспокоить. (Диссонирующий интервал тритон, состоящий из трех целых тонов, например, был прозван «дьяволом в музыке» и отвергался средневековыми музыкантами.) Странным было то, что когда Пифагор помещал подставку так, что струна разделялась не в простой пропорции, извлекаемые ноты плохо сочетались. Звуки обычно оказывались диссонирующими, а иногда и хуже. Часто тон шатался, как пьяный, по гамме.

Для Пифагора исполнение музыки было математическим действием. Как квадраты и треугольники, струна являлась для него «число-формой», так что деление струны на части Ч. Сейфе. «Ноль: биография опасной идеи»

оказывалось тем же, что и нахождение отношения двух чисел. Гармония монохорда была гармонией математики – и гармонией Вселенной.

Пифагор пришел к заключению, что пропорция управляет не только музыкой, но и всеми другими видами красоты. Для пифагорейцев отношения и пропорции контролировали музыкальную красоту, физическую красоту, красоту математическую. Понять природу было так же просто, как понять математические законы пропорций. Такая философия – взаимозависимость музыки, математики и природы – вела к созданию самой ранней пифагорейской модели расположения планет. Пифагор утверждал, что Земля находится в центре Вселенной, а Солнце, Луна, планеты и звезды вращаются вокруг Земли, находясь внутри сфер (рис. 8).

Пропорции сфер были прекрасны и упорядочены, и когда сферы двигались, они издавали музыку. Самые дальние планеты, Юпитер и Сатурн, двигались быстрее всего и производили самые высокие звуки. Самые ближние, такие как Луна, издавали более низкие ноты.

Рис. 8. Пифагорейская Вселенная

Все вместе движущиеся небесные тела создавали «музыку сфер»; небеса представляли собой прекрасный математический оркестр.

Именно это Пифагор и имел в виду, говоря:

«Все есть число».

Поскольку пропорции были ключом к пониманию природы, пифагорейцы и более поздние греческие математики тратили много сил на изучение их свойств. В конце концов они разделили пропорции на десять различных классов, назвав их гармоническим средним.

Одно из этих средних давало самое «красивое» число на свете: золотое сечение.

Достижение этого восхитительного среднего было делом особого деления струны:

нужно было разделить ее на две части так, чтобы отношение меньшей части к большей было таким же, как отношение большей части к целому (см. Приложение B). Выраженное словесно, такое отношение не кажется чем-то особенным, однако числа, связанные с золотым сечением, представлялись самыми красивыми объектами. Даже сегодня художники и архитекторы интуитивно ощущают, что такое соотношение длины и ширины наиболее эстетически привлекательно, а потому золотое сечение определяет пропорции многих произведений искусства. Некоторые историки и математики утверждают, что Парфенон, величественный афинский храм, был построен так, что золотое сечение осуществлено во всех его частях и деталях. Даже природа, кажется, учитывает золотое сечение в своих созданиях. Сравните соотношение размеров любых двух соседних камер раковины наутилуса или отношение направленных по часовой стрелке и против нее углублений на ананасе, и вы увидите, что эти пропорции близки к золотому сечению (рис. 9).

Ч. Сейфе. «Ноль: биография опасной идеи»

Рис. 9. Парфенон, раковина наутилуса и золотое сечение Ч. Сейфе. «Ноль: биография опасной идеи»

Пентаграмма стала священным символом для братства пифагорейцев, потому что элементы звезды разделяются именно так: пентаграмма полна примеров золотого сечения, а для пифагорейцев золотое сечение было царем чисел. Тот факт, что золотое сечение было излюбленным соотношением и художников, и природы, считался доказательством правильности утверждения пифагорейцев о том, что музыка, красота, архитектура, природа и само строение космоса связаны между собой и нераздельны. На взгляд пифагорейцев, пропорции правили миром, а то, что было истиной для пифагорейцев, скоро стало истиной для всего Запада. Сверхъестественная связь между эстетикой, пропорциями и вселенной надолго сделалась центральным принципом западной цивилизации. Еще во времена Шекспира ученые говорили о революции разных пропорций сфер и обсуждали небесную музыку, звучащую по всему космосу.

В системе Пифагора нолю не было места. Эквивалентность чисел и фигур делала древних греков повелителями геометрии, однако она была связана с серьезным недостатком. Она мешала тому, чтобы рассматривать ноль как число. Какая фигура, в конце концов, могла быть нолем?

Легко визуально представить себе квадрат шириной и высотой в две единицы, но что за квадрат с нулевой шириной и высотой? Трудно представить себе квадрат, не имеющий ни ширины, ни высоты, не имеющий никакой материальности. Это означало, что умножение на ноль бессмысленно. Умножение двух чисел эквивалентно нахождению площади прямоугольника, но какой может быть площадь прямоугольника с нулевой высотой или шириной?

Сегодня великие нерешенные проблемы математики формулируются в теоретических формулах, которые математики не в силах доказать. В древней Греции, однако, «числоформы» побуждали мыслить иначе. Знаменитые нерешенные вопросы имели геометрическую форму: имея только линейку и циркуль, можно ли было построить квадрат, площадью равный заданному кругу? Можно ли было с помощью этих инструментов разделить угол на три части?6 Геометрические построения и фигуры были одним и тем же. Ноль был числом, которое не имело никакого геометрического смысла, так что, чтобы включить его в свою математику, грекам пришлось бы полностью изменить способ вычислений. Они предпочли этого не делать.

Даже если бы ноль был числом в греческом смысле, составление пропорции с участием ноля противоречило бы законам природы. Пропорция больше не выражала бы отношение между двумя объектами. Частное от деления ноля на что угодно – на любое число – всегда равно нолю; другое число полностью поглощается нолем. А частное от деления чего угодно на ноль – числа на ноль – может разрушить логику. Ноль пробил бы дыру в аккуратном пифагорейском порядке Вселенной; по этой причине его нельзя было терпеть.

Пифагорейцы попытались дать отпор другой тревожащей математической концепции

– понятию иррационального. Это был первый вызов их взглядам, и братство попыталось держать все в тайне. Когда секрет просочился наружу, последователи культа прибегли к насилию.

Понятие иррациональности таилось внутри греческой математики, как бомба с часовым механизмом. Благодаря двойственности «число-формы» греческое исчисление было равносильно измерению прямой. Таким образом, отношение двух чисел было не более чем сравнением двух отрезков разной длины. Однако для любого измерения требуется стандарт, общая мера для сравнения с величиной отрезков. Например, представьте себе отрезок пряРанние вавилоняне явно не осознавали трудности трисекции угла. В эпосе о Гильгамеше говорится, что Гильгамеш был на две трети богом и на одну треть человеком. Это так же невозможно, как деление угла на три равные части с помощью линейки и циркуля – если только не считать, что богам удалось совершить бесконечное количество половых актов со смертными до рождения Гильгамеша (прим. авт.).

Ч. Сейфе. «Ноль: биография опасной идеи»

мой длиной ровно в фут. Сделайте отметку, скажем, на расстоянии пяти с половиной дюймов от одного конца, которая разделит фут на две неравные части. Греки вычислили бы пропорцию с помощью деления отрезка на маленькие кусочки, используя, например, стандартную мерку в полдюйма. Одна часть отрезка содержала бы одиннадцать таких мер, а другая – тринадцать. Отношение двух отрезков, таким образом, было бы 11:13.

Для того чтобы все вещи во Вселенной управлялись пропорциями, как надеялись пифагорейцы, любое имеющее смысл явление должно было быть связано с безупречной, точной пропорцией. Она в буквальном смысле слова должна была быть рациональной. Точнее, пропорции должны были иметь вид a / b, где a и b были бы безупречными, точными натуральными числами, такими как 1, 2 или 47. (Математики предупреждают, что b не должно быть нолем, потому что это было бы равнозначно делению на ноль, что, как мы знаем, катастрофично.) Нет необходимости говорить: Вселенная вовсе не так упорядочена. Некоторые числа не могут быть выражены в виде простого отношения a / b. Эти иррациональные числа были неизбежным следствием греческой математики.

Квадрат – одна из простейших геометрических фигур, и пифагорейцы должным образом ценили его. (Квадрат имеет четыре стороны, что соответствует четырем элементам; он символизирует совершенство чисел.) Однако в простоте квадрата прячется иррациональность. Она появляется, если вы проведете диагональ – из одного угла в противоположный.

В качестве конкретного примера представьте себе квадрат со стороной в один фут. Проведите диагональ. Одержимые рациональностью люди, такие как греки, смотрели на сторону и диагональ квадрата и спрашивали себя: каково отношение этих двух отрезков?

Первым шагом было бы создать общую мерку, может быть, маленькую линейку в полдюйма длиной. Следующим шагом было бы использование этой мерки, чтобы разделить оба отрезка на одинаковые части. Пользуясь полудюймовой меркой, мы можем разделить сторону квадрата длиной в один фут на двадцать четыре части, каждая длиной в полдюйма.

Но что получится, когда мы измерим диагональ? Используя ту же мерку, мы обнаружим… что диагональ состоит из почти тридцати четырех таких частей, но совсем точно не делится.

Тридцать четвертый кусочек чуть-чуть не умещается, линеечка торчит из угла квадрата. Мы можем усовершенствовать процесс, взять линеечку длиной в одну шестую дюйма и разделить отрезки на большее число частей. Тогда сторона квадрата окажется состоящей из семидесяти двух частей, но диагональ будет содержать больше сто одной, но меньше сто двух частей. Измерение снова окажется несовершенным. Что случится, если мы разобьем отрезки на действительно маленькие части – в миллионную долю дюйма каждая? На сторону квадрата придется двенадцать миллионов кусочков, но диагональ будет содержать их чуть меньше, чем 16 970 563. Снова наша линеечка не уляжется на оба отрезка в точности.

Какую бы мерку мы ни выбрали, измерение так и не получится точным.

На самом деле сколь бы маленькую мерку мы ни использовали, невозможно найти такую, которая измерила бы сторону и диагональ квадрата в совершенстве: диагональ несоизмерима со стороной квадрата. Тем не менее без общей меры невозможно выразить длины двух отрезков так, чтобы они образовали пропорцию. Это значит, что для квадрата со стороной в единицу длины нельзя найти такие натуральные числа a и b, чтобы диагональ квадрата могла быть выражена как a / b. Другими словами, диагональ квадрата выражается числом иррациональным; сегодня мы понимаем, что это число – корень квадратный из двух.

Для пифагорейской доктрины это было бедой. Как природа могла управляться отношениями и пропорциями, когда нечто столь простое, как квадрат, было способно опровергнуть их язык? В такую идею пифагорейцам было трудно поверить, но она была неопровержима, будучи следствием математических законов, которые были им так дороги. Одно из первых Ч. Сейфе. «Ноль: биография опасной идеи»

математических доказательств в истории касалось несоизмеримости – иррациональности диагонали квадрата.

Иррациональность представляла опасность для Пифагора, поскольку угрожала основам его вселенной пропорций. Дело еще ухудшалось тем, что пифагорейцы скоро обнаружили: золотое сечение, величайший для них символ красоты и рациональности, также является иррациональным числом. Чтобы не дать этим ужасным числам разрушить доктрину Пифагора, иррациональные числа было решено засекретить. Все члены братства хранили молчание, никому не позволялось делать записи, и несоизмеримость квадратного корня из двух сделалась глубочайшим, ужаснейшим секретом ордена пифагорейцев.

Однако иррациональные числа, в отличие от ноля, не могли игнорироваться греками.

Иррациональные числа снова и снова возникали при всевозможных геометрических построениях. Было трудно хранить иррациональность в секрете от людей, настолько одержимых геометрией и пропорциями. Нельзя было избежать того, что в один прекрасный день кто-то не выдал бы секрет. Этим кем-то оказался Гиппас из Метапонта, математик и член пифагорейского братства. Тайна иррациональных чисел оказалась для него несчастьем.

Легенды весьма неопределенны и сообщают противоречивые сведения о предательстве Гиппаса и наказании за него. Математики по сей день рассказывают о несчастном, который раскрыл миру существование иррациональных чисел. Некоторые утверждают, что Гиппаса выбросили за борт в качестве заслуженного наказания за то, что он своими грубыми фактами разрушил прекрасную теорию. Одни древние авторы сообщают о его гибели в море за нечестивость, другие считают, что пифагорейцы изгнали Гиппаса из братства и соорудили его гробницу, исключив тем самым из мира живых. Однако какова бы ни была истинная судьба Гиппаса, не приходится сомневаться, что он был отвергнут своими братьями. Раскрытый секрет потряс самые основы пифагорейской доктрины, однако, объявив иррациональность аномалией, пифагорейцы смогли предотвратить искажение их взгляда на Вселенную.

В конце концов греки неохотно включили иррациональные числа в область чисел. Пифагора убила не иррациональность, а бобы.

Легенды о кончине Пифагора являются столь же туманными, как и легенда об убийстве Гиппаса. Тем не менее все они утверждают, что смерть Пифагора была странной; некоторые источники говорят, что он уморил себя голодом, но самая распространенная версия

– что причиной его смерти были бобы. Однажды его дом загорелся – его подожгли враги, рассвирепев, что их сочли недостойными видеть Пифагора. Члены братства разбежались, спасая свои жизни. Пифагорейцев убивали одного за другим, братство перестало существовать. Сам Пифагор бежал и мог спастись, если бы не оказался рядом с бобовым полем. Там он остановился, заявив, что скорее позволит себя убить, чем пересечет это поле. Его преследователи только обрадовались этому. Они перерезали Пифагору горло.

Хотя братство рассеялось, а его вождь погиб, пифагорейское учение продолжало жить.

Оно скоро стало основой самой влиятельной философии в истории Запада – учения Аристотеля, владевшего умами на протяжении двух тысячелетий. Ноль противоречил этой доктрине и, в отличие от иррациональных чисел, его можно было игнорировать. Качества греческих «число-форм» делали это легкой задачей; в конце концов, ноль не был фигурой, а потому не мог быть числом.

Однако не вычислительная система греков и не недостаток знаний препятствовали принятию ноля. Греки узнали о нем благодаря своему интересу к ночному небу: как и большинство древних народов, они наблюдали за звездами. Первыми мастерами астрономии были вавилоняне; они узнали, как предсказывать затмения. Фалес, первый греческий астроном, научился этому у вавилонян или, возможно, у египтян. О нем говорили, что в 585 году до н. э. он предсказал солнечное затмение.

Ч. Сейфе. «Ноль: биография опасной идеи»

Вместе с вавилонской астрономией пришли и вавилонские числа.

Для целей астрономии греки использовали шестидесятеричную систему и даже стали делить час на шестьдесят минут, а минуту – на шестьдесят секунд. Около 500 года до н. э. ноль – символ-заполнитель – начал появляться в вавилонских записях; его использование, естественно, распространилось и среди греческих астрономов. Во времена расцвета древней астрономии в греческих астрономических таблицах регулярно использовался ноль; его символом был строчной омикрон «», который выглядит очень похоже на наш современный ноль, хотя это, возможно, совпадение. (Использование омикрона могло быть следствием того, что это первая буква греческого слова «ничто» – ouden). Греки не любили ноль и использовали его как можно реже.

Выполнив вычисления по вавилонской системе, греческие астрономы обычно переводили числа обратно в громоздкую греческую форму – без ноля. Ноль никогда не использовался в числе древних цифр на Западе, так что маловероятно, что омикрон – прародитель нашего ноля. Греки видели пользу ноля для вычислений, но все равно отвергали его.

Это вызывалось не невежеством и не ограничениями греческой системы «числоформ», а философией. Ноль вступал в противоречие с фундаментальными философскими воззрениями Запада, поскольку ноль содержит две идеи, отравляющие западную доктрину.

Действительно, эти концепции со временем разрушили аристотелевскую философию после ее долгого царствования. Опасные идеи были представлениями о пустоте и о бесконечности.

Ч. Сейфе. «Ноль: биография опасной идеи»

–  –  –

Бесконечность и пустота обладали могуществом, которое пугало греков. Бесконечность грозила сделать всякое движение невозможным, а пустота – разбить Вселенную вдребезги. Отвергая ноль, греческие философы придали своему взгляду на Вселенную жизнеспособность на протяжении двух тысячелетий.

Доктрина Пифагора сделалась краеугольным камнем западной философии: Вселенная управлялась отношениями и формами; планеты двигались по небесным сферам и в своем вращении создавали музыку сфер. Но что лежало за их пределами? Существовали ли все большие и большие сферы? Была ли самая внешняя из сфер концом Вселенной?

Аристотель и более поздние философы настаивали на том, что не может существовать бесконечного числа сложенных друг в друга сфер. Приняв такую философию, Запад отверг возможность существования бесконечности или бесконечного, потому что бесконечность

– благодаря Зенону Элейскому, человеку, которого его современники считали совершенно невыносимым, – начинала подгрызать корни западного мышления.

Зенон родился около 490 года до н. э., в начале Греко-персидских войн – великого конфликта между Востоком и Западом. Греки победили персов, однако греческая философия так и не смогла победить Зенона, потому что Зенон придумал парадокс, логическую загадку, которая для греческих философов представлялась неразрешимой. Для греков это был аргумент, вызывающий сильнейшее беспокойство: Зенон доказал невозможное.

Согласно Зенону, никакое движение во Вселенной невозможно8. Конечно, это глупое утверждение: любой человек может опровергнуть его, пройдясь по комнате. Хотя всем было ясно, что утверждение Зенона неверно, никто не мог найти ошибки в его рассуждениях.

Парадоксы – логические загадки – Зенона ставили в тупик как греческих философов, так и тех, кто пришел после них; они озадачивали математиков почти две тысячи лет.

В своей самой знаменитой загадке – «Ахиллесе» – Зенон доказывает, что быстроногий Ахиллес никогда не догонит неуклюжую черепаху, если она имела преимущество на старте.

Чтобы представить это более конкретно, придадим проблеме числовые значения. Предположим, что Ахиллес пробегает один фут в секунду, в то время как черепаха движется со скоростью в два раза меньшей. Предположим также, что черепаха изначально опережала Ахиллеса на один фут.

Ахиллес бежит вперед и за одну секунду достигает того места, где была черепаха.

Однако за то время, что он добирается до этой точки, черепаха, которая тоже движется, проходит полфута. Неважно, Ахиллес ведь бежит быстрее, и за полсекунды он покрывает эти полфута. Однако опять же и черепаха за это время продвинулась вперед – на этот раз на четверть фута. Мгновенно – за четверть секунды – Ахиллес преодолевает и это расстояние. Но черепаха за четверть секунды проковыляла еще одну восьмую фута. Ахиллес бежит и бежит, но черепаха каждый раз перемещается вперед; как бы Ахиллес ни приблизился к черепахе, Английская классическая эпиграмма / Пер. С. Маршака и В. Васильева. М.: Худ. лит., 1987.

Строго говоря, автор здесь ошибается: речь идет не о невозможности движения, а о его иллюзорности. Благодаря Платону эта позиция прослеживается до Парменида, Зенон лишь красиво иллюстрирует идею.

Ч. Сейфе. «Ноль: биография опасной идеи»

к тому времени, когда он достигает точки, где она только что была, черепаха проходит еще какое-то расстояние. Восьмую часть фута, шестнадцатую часть фута, тридцать вторую часть фута… все меньшее и меньшее расстояние, но все равно Ахиллес никак не может ее догнать.

Черепаха всегда его опережает (рис. 10).

Рис. 10. Ахиллес и черепаха

Всем известно, что в реальном мире Ахиллес быстро пробежал бы мимо черепахи, однако рассуждения Зенона как будто доказывали, что он никогда ее не догонит. Философы

– современники Зенона – не могли разрешить этот парадокс. Даже зная, что вывод неверен, Ч. Сейфе. «Ноль: биография опасной идеи»

они никак не могли найти ошибки в математическом доказательстве Зенона. Главным оружием философов была логика, но логическая дедукция представлялась бесполезной против доводов Зенона. Каждый шаг выглядел безупречным, но если все шаги правильны, как вывод может быть неверным?

Проблема поставила греков в тупик, однако они обнаружили источник неприятностей:

это была бесконечность. В сердцевине парадокса Зенона кроется именно она: Зенон взял непрерывное движение и разделил его на бесконечное число крошечных шагов. Поскольку число шагов было бесконечным, греки сочли, что гонка будет длиться вечно, несмотря на то, что шаги становились все меньше и меньше. Гонка никогда не закончится в конечный отрезок времени – или так они думали. Древние не имели инструментария для того, чтобы справиться с бесконечностью, однако современные математики научились управляться с нею.

Подходить к бесконечности нужно очень осторожно, но все же с ней можно совладать – с помощью ноля. Вооружившись математическими знаниями, полученными за две тысячи четыреста лет, нам нетрудно вернуться и найти ахиллесову пяту Зенона.

У греков не было ноля, но у нас он есть, и в нем заключается ключ к разрешению загадки Зенона. Иногда возможно объединить бесконечные элементы и получить конечный результат, но для этого слагаемые элементы должны стремиться к нолю 9. Так и обстоит дело с Ахиллесом и черепахой. Когда вы складываете расстояния, которые пробегает Ахиллес, вы начинаете с числа 1, потом прибавляете 1/2, потом 1/4, потом 1/8 и так далее; элементы становятся все меньше и меньше, все больше приближаясь к нолю; каждый элемент есть шаг в путешествии, пунктом назначения которого является ноль. Впрочем, поскольку у греков не было ноля, они не могли понять, что это путешествие когда-нибудь кончится. Для них числа 1, 1/2, 1/4, 1/8, 1/16 и так далее не вели к чему-то: пункт назначения не существовал. Вместо этого греки видели просто элементы, становившиеся все меньше и меньше, выходившие за пределы области чисел.

Современные математики знают, что эти элементы имеют предел: последовательность чисел 1, 1/2, 1/4, 1/8, 1/16 и так далее приближается к нолю как к своему пределу, и путешествие имеет пункт назначения. Как только это признано, легко поинтересоваться, как далеко отстоит пункт назначения и сколько времени потребуется, чтобы до него добраться. Не так уж трудно сложить расстояния, которые пробегает Ахиллес: 1 + 1/2 + 1/4 + 1/8 + 1/16 +…+ 1/2n +… Шаги, которые делает Ахиллес, становятся все меньше и меньше, все ближе и ближе к нолю, а сумма этих шагов оказывается все ближе и ближе к двум. Откуда мы это знаем?

Что ж, начнем с двух и будем вычитать по одному элементы суммы. Начнем с 2 – 1, что дает, конечно, 1. Затем вычтем 1/2 ; останется 1/2. Затем вычтем следующий элемент – 1/4 ; останется 1/4 … Мы вернулись к знакомой последовательности. Мы уже знаем, что ее предел – ноль; таким образом, по мере того, как мы вычитаем один за другим элементы из двух, не остается ничего. Предел суммы 1 + 1/2+ 1/4 + 1/8 + 1/16 +… равен 2 (рис. 11). Ахиллес пробежит 2 фута, чтобы догнать черепаху, хоть и сделает для этого бесконечное число шагов.

Более того, посмотрим, сколько времени потребуется Ахиллесу, чтобы догнать черепаху: 1 + 1/2 + 1/4 +1/8 + 1/16 +… – 2 секунды. Ахиллес не только совершает бесконечное число шагов, чтобы пробежать конечное расстояние, но и тратит на это всего 2 секунды.

Греки не могли проделать этот ловкий математический трюк. У них не было понятия предела, потому что они не верили в ноль. Элементы бесконечной последовательности не имели предела, или пункта назначения; считалось, что они делаются меньше и меньше без Это необходимое, но не достаточное условие. Если элементы стремятся к нолю слишком медленно, то их сумма не сходится к конечному числу.

Ч. Сейфе. «Ноль: биография опасной идеи»

какого-то определенного конца. В результате греки не могли справиться с бесконечностью.

Они размышляли над концепцией пустоты, но отвергали ноль как число; они заигрывали с понятием бесконечности, но отказывались признать существование чисел, которые бесконечно малы или бесконечно велики. Это было величайшим недочетом греческой математики, и это было единственным, что помешало им открыть дифференциальное и интегральное исчисление.

Рис. 11. 1 + 1/2 + 1/4+ 1/8 + 1/16 +… = 2

Бесконечность, ноль и концепция предела связаны друг с другом. Греческие философы были не в силах распутать этот узел, поэтому не имели способа разрешить загадку Зенона.

Однако парадокс Зенона был настолько важен, что греки снова и снова пытались объяснить содержащуюся в нем бесконечность. Они были обречены на неудачу, не имея нужных концепций.

Зенон сам не знал разрешения своего парадокса, да и не искал его. Парадокс полностью удовлетворял его философии. Зенон был членом элеатской школы, основатель которой, Парменид, утверждал, что подлинная Вселенная неизменна и неподвижна. Парадоксы Зенона служили подтверждением доводов Парменида. Показывая, что изменение и движение внутренне противоречивы, он рассчитывал убедить людей в том, что позади каждой изменяющейся вещи стоит нечто целостное и неизменное. Зенон и в самом деле верил в невозможность движения, и его парадокс был главной опорой этой теории.

Существовали и другие направления мысли. Атомисты, например, верили в то, что Вселенная состоит из маленьких частиц, именуемых атомами, неделимых и вечных. Движение, согласно взглядам атомистов, было движением этих маленьких частиц. Конечно, чтобы атомы могли двигаться, должно было существовать пустое пространство, куда они могли бы переместиться. В конце концов, крошечные атомы должны были как-то двигаться: не будь такой вещи, как вакуум, атомы оказались бы неизменно спрессованы друг с другом. Все замерло бы в одном положении навсегда, неспособное сдвинуться с места.

Таким образом, атомистическая теория требовала, чтобы Вселенная была полна пустоты

– бесконечной пустоты. Атомисты признавали концепцию бесконечного вакуума – бесконечность и ноль оказывались связаны воедино. Это было шокирующее заключение, однако неделимые частицы материи, провозглашенные атомистической теорией, позволяли обойти парадоксы Зенона. Поскольку атомы неделимы, существует точка, дальше которой деление невозможно. Уменьшение шагов, предполагавшееся Зеноном, не могло продолжаться до Ч. Сейфе. «Ноль: биография опасной идеи»

бесконечности. Через какое-то время Ахиллес стал бы делать шаги, которые уже не могли уменьшиться; в конце концов они достигли бы величины атома, преодолеть часть которой черепаха не может. Ахиллес наконец догнал бы неуловимую черепаху.

С атомистической теорией конкурировало другое философское учение. Вместо использования таких странных концепций, как бесконечный вакуум, оно изображало Вселенную в виде уютной ограниченности. Никакой бесконечности, никакой пустоты – только прекрасные сферы, окружающие Землю, которая, естественно, находится в центре Вселенной. Такова была система Аристотеля, впоследствии усовершенствованная александрийским астрономом Птолемеем. Она сделалась доминирующей философией западного мира.

Отвергнув ноль и бесконечность, Аристотель объяснил парадоксы Зенона.

Он просто заявил, что математики «не нуждаются в бесконечности и не используют ее». Хотя «потенциальная» бесконечность могла бы существовать в уме – как концепция деления отрезка прямой на бесконечное число кусочков – никто в действительности не способен это сделать, так что на самом деле бесконечности не существует. Ахиллес без труда пробегает мимо черепахи, потому что бесконечные элементы – просто плод воображения Зенона, а не явление реального мира. Аристотель просто пожелал, чтобы бесконечности не существовало, заявив, что она – создание человеческого ума.

Из этой концепции следовало поразительное открытие. Согласно с представлением о пифагорейской вселенной, аристотелевский космос (и его позднейшее усовершенствование Птолемеем) состоял из хрустальных сфер, в которых двигались планеты. Однако, поскольку бесконечность была отвергнута, таких сфер не могло быть бесконечное число; обязательно должна была существовать последняя. Эта самая дальняя сфера представляла собой синий шар, испещренный крошечными сияющими точками – звездами. Не могло быть ничего «за пределами» внешней сферы; Вселенная резко заканчивалась с этим последним слоем. Она удобно покоилась внутри сферы неподвижных звезд; космос был конечен в своей протяженности и полностью заполнен материей. Не существовало ничего бесконечного, не существовало пустоты; не существовало бесконечности, не существовало ноля.

Эти рассуждения имели и другое следствие; как раз по этой причине аристотелевская философия продержалась так много лет. Теория Аристотеля доказывала существование Бога.

Небесные сферы медленно вращались на своих местах, рождая заполняющую космос музыку. Однако что-то должно было быть причиной этого движения. Неподвижная Земля не может быть источником движущей силы, так что ближайшая к ней сфера должна приводиться в движение следующей сферой; эта сфера, в свою очередь, – своим более крупным соседом и так далее. Однако бесконечности ведь не существует; число сфер конечно, конечно и число вещей, которые движут друг друга. Должна существовать первопричина движения, что-то должно двигать сферу неподвижных звезд. Это – первичная сила – Бог.

Когда христианство распространилось на Западе, оно оказалось тесно связанным с аристотелевским взглядом на Вселенную и с доказательством существования Бога. Атомизм влек за собой атеизм. В некотором смысле сомнение в доктрине Аристотеля приравнивалось к сомнению в существовании Бога.

Система Аристотеля пользовалась огромным успехом. Его самый знаменитый ученик, Александр Македонский, успел распространить ее на восток до Индии до своей безвременной смерти в 323 году до н. э. Система Аристотеля пережила империю Александра, она просуществовала до времен королевы Елизаветы I, до XVI века. Вместе со столь долгим признанием учения Аристотеля имело место и отрицание бесконечности и пустоты, поскольку одно требовало другого: из признания пустоты следовало признание бесконечности. В конце концов, существуют всего две логические возможности объяснения пустоты, и обе предполагают существование бесконечности. Во-первых, пустоты могло бы быть сколь угодно Ч. Сейфе. «Ноль: биография опасной идеи»

много – значит, бесконечность существует. Во-вторых, пустоты могло бы быть ограниченное количество, однако поскольку пустота – просто отсутствие материи, должно было существовать бесконечное количество материи, чтобы обеспечить лишь ограниченное количество пустоты, – следовательно, бесконечность существует. В обоих случаях существование пустоты предполагает существование бесконечности. Пустота и ноль разрушают аккуратные рассуждения Аристотеля и его опровержение Зенона, его доказательство существования Бога. Поэтому, признав аргументы Аристотеля, греки были вынуждены отвергнуть ноль, пустоту и бесконечность.

Однако существовала проблема. Не так легко отвергнуть и бесконечность, и ноль.

Оглянемся во времени. На протяжении всей истории происходили события, но если не существует бесконечности, не может быть и бесконечного числа событий. Таким образом, должно было иметь место первое событие: творение. Однако что существовало до творения?

Пустота? Для Аристотеля это было неприемлемо. Напротив, если не было первого события, Вселенная должна была существовать всегда – и всегда существовать в будущем. Приходилось признать или бесконечность, или ноль: без них Вселенная лишается смысла.

Аристотель так ненавидел идею пустоты, что предпочел признать существование вечной и бесконечной Вселенной существованию той, в которой имел бы место вакуум. Он говорил, что вечность была «потенциальной» бесконечностью, как бесконечное деление Зенона. (Это было натяжкой, но многие ученые согласились с таким аргументом, некоторые даже приняли историю творения как еще одно доказательство существования Бога. Средневековые философы и теологи были обречены сражаться с этой загадкой на протяжении нескольких столетий.) Каким бы неверным ни был взгляд Аристотеля на физику, он был настолько влиятелен, что более тысячелетия затмевал все ему противоречащие, в том числе и более реалистические. Наука так и не могла бы двинуться вперед, пока мир не избавился от аристотелевой физики вместе с аристотелевым отрицанием бесконечностей Зенона.

Несмотря на всю свою ученость, Зенон впутался в крупные неприятности. Около 435 года до н. э. он вступил в заговор против тирана Элеи, Неарха, и провозил оружие для его свержения. К несчастью для Зенона, Неарх узнал о заговоре, и Зенон был схвачен. Рассчитывая узнать, кто были его сообщники, Неарх подверг Зенона пыткам. Скоро Зенон стал умолять палачей прекратить пытки и пообещал назвать своих сотоварищей. Когда Неарх приблизился, Зенон настоял на том, чтобы тиран подошел совсем вплотную, потому что лучше было сохранить имена заговорщиков в секрете. Неарх наклонился к Зенону. Неожиданно тот вцепился зубами в ухо Неарха. Неарх закричал, но Зенон не отпускал. Палачи смогли заставить его разжать зубы, только зарезав его. Так погиб повелитель бесконечного.

Со временем другой древний грек превзошел Зенона в вопросе бесконечного. Это был Архимед, эксцентричный математик из Сиракуз. Он был единственным мыслителем своего времени, бросившим взгляд в бесконечность.

Сиракузы были богатейшим городом острова Сицилия, а Архимед был их самым знаменитым жителем. О его юности мало что известно, по-видимому, он родился около 287 года до н. э. на Самосе, родине Пифагора. Перебравшись в Сиракузы, Архимед решал многие инженерные проблемы для их правителя, тирана Гиерона. Однажды тиран попросил Архимеда определить, изготовлена ли его корона из чистого золота или из сплава золота с серебром. Эта задача была не по силам всем ученым того времени. Однажды, погрузившись в ванну, Архимед заметил, что вода переливается через край. Он неожиданно подумал о том, что сможет измерить плотность короны и тем самым определить чистоту золота, погрузив ее в сосуд с водой и измерив объем вытесненной жидкости. Взволнованный своим прозрением, Архимед выскочил из ванны и побежал по улице Сиракуз, восклицая: «Эврика! Эврика!» и забыв о том, что совершенно гол.

Ч. Сейфе. «Ноль: биография опасной идеи»

Таланты Архимеда были полезны и войскам Сиракуз. В III веке до н. э. греческая гегемония прекратила существование. Империя Александра Македонского распалась на враждующие государства, и на Западе играла мышцами новая сила: Рим. И Рим имел виды на Сиракузы. Как говорит легенда, Архимед вооружил войско Сиракуз удивительным оружием для защиты города: катапультами, метавшими камни, мощными кранами, которые захватывали римские корабли, поднимали вверх и опрокидывали в воду, и зеркалами, отражавшими солнечный свет и таким образом на расстоянии поджигавшими римские суда. Римские солдаты так боялись этих боевых машин, что, увидев над стеной веревку или кусок дерева, обращались в бегство, думая, что это Архимед нацеливает свое оружие.

Архимед увидел бесконечность благодаря полировке своих зеркал. Греки уже не одно столетие интересовались коническими сечениями. Если рассечь конус плоскостью, можно получить окружности, эллипсы, параболы и гиперболы, в зависимости от того, под каким углом к оси конуса проведена плоскость. Параболическое зеркало обладает одной особенностью: оно собирает в точку солнечные лучи (или лучи от любого удаленного источника света) и фокусирует всю переносимую ими энергию на очень малой площади. Зеркало, которое смогло бы поджечь корабль, должно было быть параболическим. Архимед изучал свойства параболы и именно при этом впервые соприкоснулся с бесконечностью.

Чтобы понять особенности параболы, Архимед должен был научиться измерять ее.

Например, никто не знал, как определить площадь части плоскости, ограниченной параболой и пересекающей ее прямой. Площади треугольников и кругов вычислять было легко;

слегка менее правильные кривые, вроде параболы, были за пределами возможностей математиков того времени. Однако Архимед нашел способ измерить площадь параболы, используя бесконечное приближение. Первым шагом было вписать в параболу треугольник. В два маленьких незанятых пространства Архимед вписывал по треугольнику. После этого оставалось четыре еще меньших зазора, которые в свою очередь заполнялись вписанными треугольниками, и так далее (рис. 12). Это похоже на Ахиллеса и черепаху: бесконечная серия шагов, каждый из которых делается все меньше и меньше. Площади маленьких треугольников быстро приближались к нолю.

Ч. Сейфе. «Ноль: биография опасной идеи»

Рис. 12. Парабола Архимеда После долгих и сложных вычислений Архимед сложил площади бесконечного числа треугольников и так нашел площадь параболы. Однако любой его современник отверг бы такое рассуждение: Архимед использовал такой инструмент, как бесконечность, который был категорически запрещен его коллегами-математиками. Чтобы их удовлетворить, Архимед предложил также доказательство, основанное на принятых тогда понятиях, использовавшее так называемую аксиому Архимеда, хотя сам Архимед приписывал заслугу ее открытия более ранним математикам. Как вы, возможно, помните, эта аксиома гласит, что любое число, снова и снова прибавляемое к самому себе, превзойдет любое другое число. Ноль, ясное дело, сюда не был включен.

Доказательство Архимеда с использованием треугольников было очень близко к идее предела и бесконечно малых, без их действительного открытия. В своих более поздних рабоЧ. Сейфе. «Ноль: биография опасной идеи»

тах Архимед вычислил объемы тел вращения параболы и окружности вокруг прямой, что, как знает любой изучающий математику, есть одно из первых домашних заданий при изучении курса дифференциального и интегрального исчисления. Однако аксиома Архимеда отвергала ноль, который является мостом между областями конечных и бесконечных величин, мостом, абсолютно необходимым для дифференциального и интегрального исчисления и высшей математики.

Даже блестящий мыслитель Архимед иногда вместе со своими современниками пренебрегал нолем. Он верил в аристотелевскую вселенную, заключенную в гигантскую сферу.

В шутку он решил вычислить, сколько песчинок заполнило бы (сферическую) Вселенную.

В своем труде «Псаммит» («Исчисление песчинок») Архимед впервые подсчитал, сколько песчинок уляжется на семечке ромашки, сколько семечек ромашки уляжется на пальце… Перейдя от ширины пальца к стадию (стандартной греческой единице измерения расстояний), а затем к величине Вселенной, Архимед нашел, что Вселенную, заключенную во внешнюю сферу неподвижных звезд, заполнят 1051 песчинок. (1051 – это действительно очень, очень большое число. Если, например, взять 1051 молекул воды, то при условии, что каждый человек – мужчина, женщина и ребенок – будет выпивать по тонне воды в секунду, потребуется более 150 тысяч лет, чтобы такое количество воды было выпито.) Это число было настолько велико, что греческая система нумерации не могла с ним справиться. Архимеду пришлось изобрести новый способ записывать действительно огромные числа.

В греческой системе самым большим числом была мириада, и пересчитывая мириады, греки могли дойти до мириады мириад (100 000 000) и немного больше. Однако Архимед пошел дальше, «нажав кнопку перезагрузки». Он просто начал с мириады мириад, выбрав 100 000 000 в качестве единицы, и начал отсчет заново, назвав эти новые числа «числами второго порядка». (Архимед не считал 100 000 001 равным единице, а 100 000 000 – равным нолю, как поступил бы современный математик. Архимеду не приходило в голову, что начало с ноля было бы более осмысленным.) Числа второго порядка шли от мириады мириад до мириады мириад мириад мириад мириад мириад (1 000 000 000 000 000 000 000 000). Так продолжалось, пока Архимед не добрался до мириады в степени мириады, что он назвал числами первого периода. Это был очень громоздкий способ справиться с проблемой, однако так достигалось решение и даже давало гораздо большие возможности, чем Архимеду требовалось для его мысленного эксперимента.

Однако как бы ни велики были придуманные Архимедом числа, они были конечными – и их было достаточно, чтобы переполнить Вселенную песком. Бесконечность не была нужна в греческой Вселенной. Возможно, имея больше времени, Архимед начал бы видеть соблазн бесконечного и ноля. Однако ученый встретил свою судьбу, когда пересчитывал песчинки.

Римляне были слишком сильны для Сиракуз. Воспользовавшись малым числом защитников сторожевой башни и легкой возможностью влезть на стену, римляне сумели проникнуть в город. Как только жители Сиракуз обнаружили, что римские солдаты уже внутри стен, они так перепугались, что и не думали о сопротивлении. Римляне хлынули в город, но Архимед был глух к царившей вокруг панике. Он сидел на земле и чертил окружности на песке, стараясь доказать теорему. Римский солдат увидел перед собой оборванного 75-летнего старика и потребовал, чтобы тот шел за ним. Архимед отказался, потому что доказательство было еще не закончено. Обозленный солдат зарезал его. Так погиб величайший мыслитель древнего мира, бессмысленно убитый римлянином.

Убийство Архимеда оказалось одним из величайших вкладов римлян в математику.

Римская эра длилась около семи столетий. Все это время заметного развития математики не происходило. История шла вперед: христианство распространилось по Европе, Римская империя пала, Александрийская библиотека была сожжена, и начались Темные века. ПроЧ. Сейфе. «Ноль: биография опасной идеи»

шло еще семь столетий, прежде чем Запад вновь приблизился к открытию ноля. Тем временем два монаха разработали календарь без ноля, чем обрекли нас на вечную путаницу.

Ч. Сейфе. «Ноль: биография опасной идеи»

–  –  –

Эта «глупая ребяческая дискуссия» – о том, начинается ли новый век с года 00 или с года 01, – снова и снова возникает каждую сотню лет. Если бы только средневековые монахи знали о ноле, наш календарь не был бы так нелогичен.

Монахов нельзя винить за их невежество. Ведь в Средние века на Западе изучали математику только христианские монахи, они были единственными, кто чему-то учился. Математика была нужна монахам для двух вещей: молитв и денег. Чтобы считать деньги, они должны были знать… ну, как считать. Для этого они использовали абак или счетную доску

– приспособление, похожее на абак, где камешки или иные предметы можно было передвигать. Такое занятие не требовало особых знаний, но по средневековым стандартам представлялось искусством. Чтобы молиться, монахам нужно было знать дату и время суток. В результате отсчет времени был жизненно важен для церковных ритуалов. Монахи должны были день за днем произносить разные молитвы в разные часы суток. (Английское слово noon – «полдень» – происходит от латинского nones: службы в средневековых церквях в середине дня.) Как мог ночной сторож знать, когда поднимать своих собратьев с удобных соломенных подстилок, чтобы они начали дневное богослужение? И если у вас не было точного календаря, вы не могли знать, когда праздновать Пасху. Это была большая проблема.

Ч. Сейфе. «Ноль: биография опасной идеи»

Конец ознакомительного фрагмента.

Текст предоставлен ООО «ЛитРес».

Прочитайте эту книгу целиком, купив полную легальную версию на ЛитРес.

Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам

Похожие работы:

«“Вопросы культурологии”.-2010.-№12.-C.85-90. Культура исламо-христианского диалога в России Силантьев Роман Анатольевич* ФГОУ ВПО "Московский государственный лингвистический университет". Россия, 119034, Москва, ул. Остоженка, 38. E-mail: rsilantiev@mail.ru В статье затрагивается актуальная и малоизученная тема современн...»

«Федеральное агентство по образованию РФ ФГБОУ ВПО "Тверской государственный университет" Филологический факультет Кафедра филологических основ издательского дела и литературного творчества (наименование кафедры, факультета) Утверждаю: Декан филологического ф-та "_24"_09_ 2013 г. Рабочая про...»

«Владимир Кучин Всемирная волновая история от 1600 г. по 1799 г. http://www.litres.ru/pages/biblio_book/?art=11611107 ISBN 9785447420338 Аннотация Книга содержит хронологически изложенное описани...»

«В. В. КОСТЮКОВА РОМАН С. РИЧАРДСОНА "ПАМЕЛА" В ПЕРЕВОДЕ ИВАНА ШИШКИНА П. Н. Берков относил И. В. Шишкина, поэта и переводчика 40-х гг. XVIII в., к "типу русского писателя, воспитанного на старо­ русской рукописной традиции и переходящего к новым „европей­ ским вкусам".1 Среди пер...»

«Михаил Погарский Истории ветра Красногорск Истории ветра. Истории снежного эха. О тех, кто витает среди кучевых облаков. О тех, кто волнует влюблённое сердце поэта. О том, что ложится на строки парящих стихов. Египет. Аравийская пустыня Сегодня на меня нашёл стих. Я брёл по...»

«Отчет по соблюдению договорных обязательств за 2015 год Корпорация Интернета по распределению адресов и номеров Отчет об Соблюдение договорных обязательств аудиторской Отчет об аудиторской проверке регистратур проверке за новых gTLD за март 2015 года 2015 год http://www.icann.org/en/resources/compliance/reports Содержание1 I. Ис...»

«РОССИЙСКАЯ АКАДЕМИЯ НАУК ИНСТИТУТ ИСТОРИИ МАТЕРИАЛЬНОЙ КУЛЬТУРЫ ГРЕКИ И ВАРВАРЫ СЕВЕРНОГО ПРИЧЕРНОМОРЬЯ В СКИФСКУЮ ЭПОХУ Ответственный редактор доктор исторических наук К. К. Марченко Санкт-Петербург АЛЕТЕЙЯ УДК 94(36) ББК 63.3(0)32 Г80 И здание ре...»

«ШУМЕНКО О. А. Сумской государственный университет СЛОВООБРАЗОВАТЕЛЬНЫЕ ХАРАКТЕРИСТИКИ ЧИСЛИТЕЛЬНЫХ АНГЛИЙСКОГО ЯЗЫКА Экспликация истоков номинативных единиц имеет свою историю и трактуется по-разному учеными лингвистических студий. В настоящее время приоритетным...»

«Николай Семёнович ЛЕСКОВ (1831 1895) Когда читаешь Н. С. Лескова, трудно понять, сказку он рассказывает или быль. Многое в его историях таинственно и непонятно, но завораживает, как старинные заклинания. Сам автор о "Неразменном рубле" и других своих святочных рассказах писал тож...»

«Администрация Алтайского края У П Р А В Л Е Н И Е А Л Т А Й С К О Г О КРАЯ ПО КУЛЬТУРЕ И А Р Х И В Н О М У ДЕЛУ ПРИКАЗ ОТ г. Барнаул Об утверждении предмета охраны, границ территории и правового...»

«Раздел 3 ПРОБЛЕМЫ МЕТОДОЛОГИИ, ИСТОРИОГРАФИИ И ИСТОЧНИКОВЕДЕНИЯ ИСТОРИИ УДК 94(47).084(093) + 791.43-2 О. В. Горбачев СОВЕТСКИЙ ХУДОЖЕСТВЕННЫЙ КИНЕМАТОГРАФ КАК ИСТОРИЧЕСКИЙ ДОКУМЕНТ: ОСОБЕННОСТИ АНАЛИЗА И ИНТЕРПРЕТАЦИИ1 В статье анализируются различные аспекты использования художественного кино как истор...»

«ЧАСТНАЯ ОБРАЗОВАТЕЛЬНАЯ ОРГАНИЗАЦИЯ ВЫСШЕГО ОБРАЗОВАНИЯ "СОЦИАЛЬНО-ПЕДАГОГИЧЕСКИЙ ИНСТИТУТ" Кафедра Гуманитарных дисциплин Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисципли...»

«Искендерова М.С. важного и весьма обширного вопроса, как состояние изученности азербайджано-русских отношений, представляется весьма актуальной и своевременной. География при этом не является основополагающим фактором, хотя она и не отбрасывается. Именно вза...»

«Лонгчен Рабджам. Драгоценная Сокровищница Дхармадхату Лонгчен Рабджам ДРАГОЦЕННАЯ СОКРОВИЩНИЦА ДХАРМАДХАТУ Монастырь-академия йоги "Собрание Тайн" Лонгчен Рабджам. Драгоценная Сокровищница Дхармадхату Киев. Ника-Центр 2002 ББК 87.3 Л76...»

«Двести четвертая. Мне довелось несколько лет прослужить в 204-й, гвардейской, дважды Краснознамённой, орденов Кутузова и Богдана Хмельницкого 2-й степени Речицко – Бранденбургской зенитной ракетной бригаде. Бригада в годы войны была дивизией и прошла славный боевой путь. Своё наименование она получила за освобож...»

«УДК 947.084 Н.А. Панова, А.П. Коробейникова Екатеринбург БРАЧНО-СЕМЕЙНЫЕ ОТНОШЕНИЯ В РОССИИ: ИСТОРИЯ "ДОПЕРЕСТРОЕЧНОЙ РОССИИ" Аннотация: в статье датется характеристика влияния значимых общественно-исторических событий ХХ в. на сфе...»

«МОСКОВСКИЙ ГУМАНИТАРНЫЙ УНИВЕРСИТЕТ Институт гуманитарных исследований Центр теории и истории культуры МЕЖДУНАРОДНАЯ АКАДЕМИЯ НАУК (IAS) Отделение гуманитарных наук Русской секции МЕЖДУНАРОДНАЯ АКАДЕМИЯ НАУК ПЕДАГОГИЧЕСКОГО ОБРАЗОВАНИЯ Центр тезаурологических исследований ТЕЗАУРУСНЫЙ АНАЛИЗ МИРОВОЙ КУЛЬТУРЫ Сбор...»

«Библиотека уральского горнозаводчика XVIII в. Н. А. Демидова Исследования в области истории книги позво­ ляют нашим современникам лучше понять ду­ ховный мир людей давно минувших эпох, круг их интересов, мыслей и устремлений. Библиотеки,, собранные два столетия назад сановными вельм рж ам и1,...»

«Рабочее движение в Германии в годы Первой мировой войны: левое крыло социал-демократии. Росинская Екатерина Евгеньевна Учитель истории и обществознания ГБОУ "Школа №773 "Центр образования "Печатники" В отечественной историографии очень подроб...»

«Евдокия Турова Кержаки (сборник) http://www.litres.ru/pages/biblio_book/?art=9746204 Евдокия Турова. Кержаки. Проза: Маматов; Санкт-Петербург; 2007 ISBN 5-91076-002-5 Аннотация Тема книги редкая и особая. Книгу составляют прозаиче...»

«П.Л. Белков ОКЕАНИЙСКИЕ ПРЕДМЕТЫ Л. С. ВАКСЕЛЯ В ИСТОРИИ СОЗДАНИЯ НАУЧНЫХ ЭТНОГРАФИЧЕСКИХ КОЛЛЕКЦИЙ МАЭ (ПО ДОКУМЕНТАМ МАЭ РАН, РГА ВМФ И ПФА РАН) Непосредственным стимулом к настоящему исследованию послужила гипотеза Дэвида Аттенборо, положенная в основу фильма "The Lost Gods of Easte...»

«Сэмюэл Ричардсон Кларисса, или История молодой леди Анна Хоу пишет своей подруге Клариссе Гарлоу о том, что в свете много говорят о стычке между Джеймсом Гарлоу и сэром Робертом Ловеласом, закончившейся ранением старшего брата Клариссы. Анна просит рассказать о случившемся, а от имени своей...»

«Материалы собранные Юрием Леонидовичем Даниловым полковником в отставке, бывший пропагандист 305 тп, Сергеем Николаевичем Шаповал, заместителем начальника штаба 309 тп, боевого пути 124 отдельного танкового Любанского ордена "Красной Звезды" полка (с 01.0...»








 
2017 www.kniga.lib-i.ru - «Бесплатная электронная библиотека - онлайн материалы»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.