WWW.KNIGA.LIB-I.RU
БЕСПЛАТНАЯ  ИНТЕРНЕТ  БИБЛИОТЕКА - Онлайн материалы
 

Pages:     | 1 |   ...   | 2 | 3 || 5 | 6 |   ...   | 7 |

«Annotation В книге на основе новейших научных данных воссоздается картина мироздания в ее развитии — от первых мифопоэтических представлений до современной космологической панорамы. Автор обращается ...»

-- [ Страница 4 ] --

Автор. Похоже, в столь принципиальном споре между сторонниками двух гипотез одна из сторон использовала не совсем корректные доказательства своей правоты. Но как же в таком случае использовать накопленные знания в области астрономии и экспериментальные данные наземных опытов со светом, чтобы объективно разобраться в этом непростом вопросе?

Профессор. Современных научных фактов вполне достаточно, чтобы подойти к решению данной проблемы весьма убедительно и в наглядной форме. Однако логические доказательства, приводимые ниже, требуют философского обобщения и соответствующих принципиальных оценок.

Автор. Двойные звезды оказались тем камнем преткновения, о который якобы разбились все корпускулярные теории света (Ньютон, Ритц), предполагавшие изменение скорости света в относительном движении тел. Исследователи (Ритц, Де Ситтер, Эйнштейн и др.), анализируя характер прохождения света от двойных звезд, с учетом переменной скорости света, обнаружили, по их мнению, несоответствие расчетных траекторий с кеплеровскими. Несмотря на многие загадочные явления, наблюдаемые у двойных звезд (периодическое изменение яркости, температуры и т. п.), эти исследователи не заметили связи загадочных явлений с вышеназванными особенностями прохождения света. Не здесь ли кроется разгадка?

Профессор. Двойные звезды обращаются около их общего центра масс под действием взаимного тяготения. Периоды обращения двойных звезд, различимых в телескопы как две светящиеся звезды, составляют тысячи лет. Самый короткий из них около года. Имеются двойные звезды, расположенные так близко друг от друга, что при наблюдении в телескопы они сливаются в одну светящуюся точку. Периоды таких спектрально-двойных звезд более короткие — от 2 часов до 15 лет. Скорости движения двойных звезд по их орбитам достигают десятков км/сек.



Рассмотрим прохождение света от двойных звезд, движущихся по круговой орбите (рис. 74а) вокруг центра. Расстояние от центра орбиты до наблюдателя равно L. Полагаем, что радиус орбиты намного меньше этого расстояния, благодаря чему лучи света можно принять параллельными (все эти допущения ни в коей мере не снижают общности задачи, но упрощают ее решение). Плоскость орбиты совпадает с лучом зрения.

Составляющие скорости света от звезд S1 и S2 в сторону приемника 1 соответственно C1 и С2 определяются суммой скоростей света относительно излучателей и составляющими скоростей движения звезд по орбитам. Зная расстояния звезд S1 и S2 относительно приемника и скорости распространения света C1 и C2, можно определить время прихода лучей t1 и t2.

Наблюдатель, находящийся на расстоянии L от пары звезд, будет видеть движение звезд не по круговой орбите, а по орбите эллиптической формы. На рис. 74-б показана эволюция видимой формы орбиты по мере удаления наблюдателя на расстояния L1, L2… Ln от звезд. Видимые орбиты постепенно вытягиваются, а эксцентриситет их увеличивается. Если принять за единицу времени период обращения Т звезд по орбите и изобразить формы наблюдаемых орбит через единичные интервалы времени, то смещение к 11 относительно 1 будет равно VT, точек 21 относительно 2 — равно 2 VT, а точек n1 относительно n — nVT. Из рисунка видно, что при удалении более некоторого критического расстояния Lкр, орбиты начинают накладываться друг на друга (заштрихованные области на рисунке). Это означает, что наблюдатель будет видеть двойные звезды одновременно в различных местах, причем «звездные привидения» будут появляться и исчезать в согласии с их периодическим движением.





Автор. Возможно ли такое удивительное явление в природе? Ведь, по мнению Эйнштейна и его последователей, никаких следов таких явлений не было обнаружено, что дало им основание исключить из рассмотрения альтернативные объяснения загадочного феномена.

Профессор. Однако именно в этом и состоит их ошибка. В звездном мире имеются многочисленные примеры двойных звезд, у которых наблюдаются как раз такие удивительные физические явления. Особенно это относится к двойным закритическим звездам, расстояние которых до наблюдателя превосходит критические (LКР.), и видимые орбиты накладываются друг на друга (если расстояние менее LКР., ТО Такие звезды называются докритическими.

Период закритических спектрально-двойных звезд невелик — от 2 часов до 15 лет, а вследствие большого расстояния до Земли они сливаются в одну светящуюся точку, которая периодически меняет свой блеск и спектральный состав. В качестве примера таких «дьявольских» звезд уместно привести и уже упомянутый Алголь — звезду Персея с периодом 68 часов 49 минут (из них 59 часов блеск звезды сохраняется на одном уровне, затем он в течение 5 часов уменьшается на 2/3), и звезду b Лиры, которая периодически изменяет свой блеск от 3,4 до 4,4 звездной величины за период около 13 суток.

Автор. Существует еще один удивительный тип переменных звезд. Это — цефеиды, или пульсирующие звезды-гиганты.

Профессор. На таких звездах бывают неоднородные по яркости, температуре и химическому составу участки поверхности, напоминающие пятна на Солнце. При вращении такой звезды движение участков поверхности будет происходить по различным орбитам, причем половину периода они будут находиться на невидимой стороне. Поскольку период обращения цефеид невелик (от 1,5 часа до 45 суток), а периферическая скорость значительная (до 100 км/сек), то создаются благоприятные условия для возникновения явлений, аналогичных двойным закритическим звездам с учетом обязательных затмений.

Суммирование световых потоков от неоднородных участков, происходящее за счет перекрытия кажущихся орбит, значительно усиливает эффект пульсации блеска и температуры звезды. Если звезда прецессирует, то интенсивность пульсаций блеска и температуры может происходить с некоторым изменением периодичности. Одновременно может изменяться и спектр звезды. Примером подобных звездных объектов могут как раз и служить физически переменные звезды.

Автор. Можно ли обнаружить с помощью телескопа или каких-либо приборов искажения орбит звезд, возникающие вследствие переменной скорости света?

Профессор. Так как расстояния до далеких звезд определяются со значительными ошибками (до 20 % от расстояния), а искажение орбиты происходит только в направлении луча зрения, то заметить искажение весьма сложно. Зато при наблюдении планет Солнечной системы искажения орбит становятся заметными. Более того, неучет таких искажений может привести к серьезным негативным последствиям. Так, ошибки, допущенные при радиолокационном измерении расстояний до Луны, Венеры, Марса, привели к неудачным запускам космических автоматических аппаратов, в разное время направляемых к этим планетам.

Автор. Думается, читателям небезынтересно более подробно познакомиться с этими поучительными фактами.

Профессор. Напомню, что измерение расстояния и скорости относительного движения между Землей и Венерой осуществлялось путем посылки мощных радиолокационных сигналов в сторону Венеры наземными станциями, при этом определялось время прихода на Землю отраженных сигналов от венерианской поверхности. Учитывая характер орбитального движения этих планет, локацию начинали в период, когда расстояние до Венеры достигало около r1 = 80 млн. км (положение планет 1–1 на рис. 75), затем оно сокращалось до r2 = 40 млн. км (положение 2–2 противостояния планет) и потом опять увеличивалось до r3. Длительность всего процесса измерений достигала трех месяцев.

На первом участке движения от 1–1 до 2–2 Земля и Венера сближаются, а на втором участке, от 2–2 до 3–3, удаляются друг от друга. Следовательно, результирующая скорость С1 прохождения радиосигналов от Земли до Венеры и обратно на первом участке больше, чем С, а на втором — меньше, и это должно отразиться на продолжительности интервала времени от момента посылки сигналов до их приема. Поскольку эти особенности распространения радиосигналов не учитывались и скорость их распространения принималась постоянной и равной скорости света, расчетные данные не совпали с фактическими: на первом участке расчетные расстояния ri* оказались короче (ri*ri, i = 1; 2; 3), а на втором участке длиннее (ri*ri).

Чтобы подогнать расчетно-экспериментальные данные к истинным, исследователи приняли «оригинальное» решение — условно переместить Венеру вперед по орбите примерно на 700 км (положения Венеры 11, 21, 31 на рисунке). Только в этом случае оказалось возможным «свести концы с концами» и якобы подтвердить справедливость специальной теории относительности.

Однако если отбросить какие-либо подгонки и учесть действительные скорости распространения радиосигналов между планетами, то проведенный эксперимент является убедительным подтверждением справедливости классического закона сложения скоростей для световых излучений и радиоизлучений. Нельзя пренебрегать законами распространения сигналов в относительном движении, поскольку это может оказаться особенно опасным, например, при навигации в условиях космического полета.

Автор. У нас радиолокационные измерения расстояний до Венеры проводились в 1962– 1975 годах. Нет ли других данных, свидетельствующих о трудностях, к которым приводят релятивистские расчеты, и ошибках навигации в современной космонавтике?

Прфессор. События, связанные с полетами космических летательных аппаратов «Фобос-I»

и «Фобос-II» к Марсу, и их загадочное исчезновение, навигационные просчеты при запусках других летательных аппаратов имеют прямое отношение к проблеме распространения электромагнитных сигналов. Наиболее показательны в данном плане неудачи с «Фобосами».

Напомню, что эти аппараты, оснащенные новейшей исследовательской и навигационной аппаратурой, после длительного полета достигли окрестностей Марса. Предполагалось, что «Фобос-I» будет проводить изучение поверхности планеты Марс, а «Фобос-II» осуществит посадку на спутник Марса Фобос. Связь с «Фобосом-I» прекратилась внезапно, в это время второй аппарат, «Фобос-II», продолжал процесс сближения с марсианским спутником. Однако, несмотря на принятые меры предосторожности в процессе дальнего наведения аппарата по радиосигналам с Земли, и «Фобос-II» также прекратил взаимодействие с наземными станциями.

В итоге космическая эпопея завершилась безрезультатно. Конечно, у подобной неудачи может быть много случайных причин. Однако есть одна возможная причина, носящая не случайный, а систематический характер. Если навигацию осуществлять, опираясь на постулат постоянства скорости света (радиосигналов), то в этом случае неизбежны роковые ошибки наведения, которые могут служить причиной провала всей операции.

Автор. Можно ли оценить масштабы подобных ошибок?

Профессор. К сожалению, в печати не приводятся сведения о навигационной космической обстановке и методике проведения локационных измерений. Поэтому оценку подобной ситуации можно дать, исходя из общих положений небесной механики. Как известно, «Фобосы»

успешно преодолели весь путь от Земли до Марса. Радиолокационный сигнал, который посылался с наземной радиостанции на летательный аппарат, принимался его бортовой станцией, а затем переизлучался и возвращался обратно на Землю, преодолевая расстояние туда и обратно за время более 10 минут. Навигация осложняется тем, что планеты — Земля и Марс — движутся по своим орбитам с разными скоростями (Земля — со скоростью 29,76 км/сек, а Марс — 24,11 км/сек), а естественный марсианский спутник Фобос летает вокруг Красной планеты со скоростью около 3 км/сек и периодом обращения 7,68 часа. Интересно отметить, что Фобос вращается вокруг Марса в 3,2 раза быстрее, чем Марс вращается вокруг своей оси, — это единственный случай в Солнечной системе.

Если при навигационных расчетах скорость света (радиосигналов) принималась постоянной в относительном движении небесных тел, то погрешности локационных измерений достигают следующих величии. Вследствие неучета скорости Марса относительно Земли, равной 5,65 км/сек, и длительности прохождения прямого и обратного радиосигналов около 10 минут погрешность в определении расстояния до Марса может достигать до 1000–2500 км.

Такая ошибка в определении расстояния от поверхности Марса до летательного аппарата «Фобос-I» уже могла служить причиной его гибели. Для навигации же «Фобоса-II» особую коварность представляет орбитальная скорость спутника Марса — Фобоса. В течение половины периода обращения, когда спутник не закрыт от наблюдателя Марсом, он совершает движение навстречу Земле, а затем удаляется со скоростью 3 км/сек.

Вследствие этого ошибка радиолокации со стороны Земли может периодически меняться в пределах — 1500 км в течение 3,84 часа (половина периода обращения). Если «Фобос-II» вышел на ту же орбиту, что и спутник Фобос, и летел на некотором постоянном расстоянии от него, то наземные радиолокационные станции фиксировали расстояние между ними со знакопеременной ошибкой в течение каждого полупериода вращения (3,84 часа). Так, например, если расстояние между аппаратом и спутником составляло четверть длины орбиты, то ошибка в измерении этого расстояния была не менее — 1500 км. Поскольку дальность действия автономной системы наведения «Фобоса-II»

может быть меньше указанной ошибки измерения, то вероятность столкновения и гибели аппарата становится существенной. Избежать всех этих ошибок можно при условии проведения навигационных измерений на основе классического сложения скоростей распространения радиосигналов в относительном движении небесных тел.

Автор. Из этого примера видно, как дорого платит человечество за ошибочные гипотезы, если оно слепо принимает их на веру.

Уточнение особенностей распространения света при относительном движении тел, по-видимому, позволяет выяснить и весьма интересный вопрос:

почему скорость света, идущего от звезд, больше, чем скорость света земных источников излучения почти на 3000 км/сек?

Профессор. Да, основание для этого вполне достаточное. Звезды как источники светового излучения отличаются тем, что их раскаленная поверхность представляет собой бурно кипящую, фонтанирующую среду. Каждая раскаленная частица этой сферы, излучающая свет, совершает беспорядочные движения с огромными скоростями. Вследствие этого потоки света, идущие от звезды в окружающее пространство, приобретают скорость, которая складывается от скорости излучения частицей (300 000 км/сек) и скорости ее теплового движения относительно поверхности звезды. Именно эта добавочная скорость звездных источников излучения (в среднем около 3000 км/сек) и не регистрируется наблюдателями, расположенными на Земле.

Автор. Ну вот, кажется, мы вплотную подошли к анализу всего комплекса загадок Солнечной системы и ее освоения…

СОЛНЦЕ И ЕГО СЕМЬЯ

Звездную систему, с которой навсегда связана космическая судьба человечества, уместно сравнить с гигантской цирковой ареной, где по замкнутым круговым (точнее, эллиптическим) орбитам бегают 5 маленьких собачек, 2 верблюда и 2 слона (рис. 76). Конечно, здесь много и всякой другой космической мелочи: спутники планет (рис. 77.), астероиды, кометы, метеоры, искусственные летательные аппараты, — но в данный момент этой малозначительной мелюзгой можно пренебречь. Хотя, по подсчетам астрономов, только астероидов в окрестностях солнечной системы не менее четверти миллиарда.

Начнем с крупной «дичи». 5 собачек — это планеты, как принято говорить, земного типа (их размеры приближаются к земным): сама Земля, Марс, Венера, Меркурий, Плутон. 2 верблюда — холодные Уран и Нептун. 2 слона — газообразные гиганты Юпитер и Сатурн (рис. 78). На первый взгляд представляется чистой случайностью, что ближайшая к Солнцу планета названа именно Меркурием (а не в честь какого-то другого Божества), вторая — по имени Богини любви. И так далее. Но это только на первый взгляд. Все имеет свое объяснение.

У каждой из видимых невооруженным глазом планет с самого начала был подмечен свой «характер». Под него, как станет понятным ниже, и подбиралось название.

Как уже говорилось, что наша Галактика имеет размеры диаметра около 100 000 световых лет. Так вот, Солнечная система расположена на расстоянии 27 000 световых лет от центра Галактики и на расстоянии 46 световых лет к северу от плоскости ее симметрии (так называемой галактической плоскости). Галактика вращается, и вместе с ней со скоростью 220 км/сек вращается Солнечная система со всеми большими и малыми планетами. Полный оборот и возвращение в условно исходную точку происходит за 2,2Ч108 лет. Этот промежуток времени именуется космическим годом.

Пять ярких планет на ночном небосклоне известны человеку давным-давно. Существовал даже культ поклонения планетам (а заодно и другим священным звездам), известный под названием сабеизма. Термин этот, как и сама религия, мало что говорит современному человеку.

В действительности существовало древнее Сабейское царство, населенное племенами сабеев, говоривших на сабейском языке. Располагалось оно во времена позднеегипетской, древнегреческой и древнеримской истории на юге Аравийского полуострова. Это та самая «Счастливая Аравия» античных авторов, о богатстве и чудесах которой в старину слагались легенды. В современном Йемене от тех времен сохранилось множество развалин домусульманских храмов — сабеистских святилищ, воздвигнутых в честь звездных и планетных Божеств. Сабеизм достаточно хорошо известен через библейских халдеев — чародеев и звездопоклонников. Однако «халдеи» — несколько размытое этническое и лингвистическое понятие. Считается, что народ под таким названием, говоривший на одном из семитских языков, переселился, по одной из версий, именно из Аравии в Месопотамию (Двуречие) в начале 1-го тысячелетия до н. э., смешавшись здесь с коренными семитскими племенами. Но главное — халдеи принесли в Вавилонию свою «звездную культуру»: астрономические навыки, книги, каталоги, результаты многовековых наблюдений за небесными объектами (кстати, по халдейским исчислениям, человеческая история начинается примерно за 400 тысяч лет до новой эры; с этой цифрой соглашался и Ломоносов). Во всяком случае, нет сомнения в том, что своими достижениями астрономия Вавилона — одна из самых развитых астрономий Древнего Мира — во многом обязана халдеям, а через них и сабеям-звездопоклонникам.

Обнаружить и зафиксировать перемещение планет среди других относительно неподвижных светил сравнительно нетрудно. Поэтому в лексиконе разных народов им нашлось подходящее и одинаковое по смыслу наименование — «блуждающие звезды».

Уже в древности наблюдатели пришли к выводу, что «блуждающие звезды» находятся к Земле ближе, чем неблуждающие. На эту мысль навели затмения — заслонение Луной Солнца, звезд и планет. На этом основании древние звездочеты в разных странах и независимо друг от друга объявили Луну самым близким к нам небесным телом. Оригинальным способом определялось и расстояние до планет — по скорости их перемещения по небосклону. Сатурн возвращался в исходную точку отсчета среди звезд каждые 29,5 лет, Юпитер — через 12 лет, Марс — через 2 года, Венера — через 225 дней, Меркурий — через 88 дней, а Луна — через 28 дней. Было разгадано, что этот порядок соответствует последовательности расстояния планет до Земли. Другими словами, Сатурн с самого начала считался самой отдаленной из всех видимых невооруженным глазом планет, а Луна — самым близким. Кроме того, планеты подразделялись на верхние и нижние — в соответствии с различием в их движении. Меркурий и Венера как бы сопровождают Солнце, находясь в его близи и никогда не удаляясь, соответственно, больше чем на 29° и 47°. Они получили название нижних (точнее — внутренних) планет. Напротив, верхние (точнее — внешние) планеты — Марс, Юпитер, Сатурн — более свободно располагаются возле Солнца и менее привязаны к нему в своем движении.

Далеко не сразу люди осознали, что облик «звезды» обманчив. На самом деле планеты — массивные шары, состоящие из горных пород, металлов и газов, и светят они отраженным солнечным, а не собственным светом. С каждым веком все более совершенными становились наблюдения с помощью телескопов и других хитроумных приборов, вроде спектрографа. Они позволили непрерывно увеличивать общий массив научных данных о строении и природе больших и малых спутников Солнца.

Во все века сохранялся стойкий интерес к вопросу: откуда что взялось? как и когда появились во Вселенной Солнце и его семья? в какой последовательности? и сколько еще тысячелетий будут они являть себя миру на земном небосклоне? По существу, лишь чуть больше три столетия ответы на поставленные вопросы стали даваться, исходя из опытного естествознания и скрупулезных математических расчетов. И с самого начала в центре внимания ученых и читающей публики оказались космогонические гипотезы о происхождении Солнечной системы.

Для того, чтобы такие гипотезы не противоречили научным данным, они должны объяснять следующее:

1) почему орбиты всех планет лежат практически в плоскости солнечного экватора,

2) почему планеты движутся вокруг Солнца по орбитам, близким к круговым,

3) почему направление обращения вокруг Солнца одинаково для всех планет и совпадает с направлением вращения Солнца и собственным вращением планет вокруг осей,

4) почему 98 % массы Солнечной системы приходится на Солнце и лишь 2 % на планеты, тогда как планеты обладают 98 % момента количества движения всей Солнечной системы,

5) почему планеты делятся на две группы, резко различающиеся между собой средней плотностью?

И все же гипотез, удовлетворяющих вышеперечисленным требованиям, оказалось слишком много. Среди них есть вихревые, объясняющие происхождение планет и других космических объектов на основе теории вихреобразных движений, якобы доминирующих в Космосе. В пользу таких концепций, восходящих еще к знаменитому французскому мыслителю Рене Декарту (1596–1650), говорят сегодня и спиральные галактики, и торсионные (скрученные) поля, и другие спиралевидные феномены. Поэтому «вихревые подходы» не утратили своего значения и в наши дни.

Начиная с ХVIII века достаточное распространение получили катастрофические гипотезы происхождения небесных тел. Так, знаменитый в прошлом французский естествоиспытатель Жорж Бюффон (1707–1788) считал, что Земля и планеты образовались в результате столкновения Солнца с кометой. Катастрофические гипотезы, хотя и не имеют всеобщей поддержки, продолжали обосновываться в ХХ веке. К наиболее известным их авторам относятся Дж. Джинс и И. Великовский.

Самыми популярными, однако же, оказались эволюционные гипотезы (рис. 79).

Исторически первой в их далеко не ограниченном ряду оказалась гипотеза крупнейшего немецкого философа И. Канта. Он предполагал, что первоначально мировое пространство было заполнено холодным рассеянным веществом в виде пылевого облака. Постепенно, под воздействием сил тяготения пылинки стали слипаться и образовывать плотные сгустки, которые после длительного периода разогревания превратились в знакомые небесные тела.

Спустя четыре десятилетия П. С. Лаплас (1749–1827) предложил еще одну небулярную гипотезу по, так сказать, диаметрально противоположной схеме. Согласно Лапласу, Солнце первоначально представляло собой огромную медленно вращающуюся раскаленную туманность.

Силы тяготения заставляли увеличивать скорость этой колоссальной огненной массы, которая от этого постепенно сплющивалась. Далее вокруг протосолнца образовалось гигантское огненное кольцо; в процессе охлаждения оно распалось на отдельные сгустки. Из них в конечном итоге образовались все планеты и их спутники. Хотя после обнародования классических космогонических гипотез Канта и Лапласа на протяжении более чем двух веков было предложено еще несколько десятков возможных объяснений, все же именно две первые доминировали в науке до последнего времени и даже, несмотря на свою альтернативность, фигурировали как нечто единое целое, именуясь небулярной гипотезой Канта-Лапласа.

Относительно неизбежного вопроса: откуда же в Космосе взялось первичное вещество — строительный материал для планет и Солнца — возможны различные ответы:

1) планеты образуются из того же газо-пылевого облака, что и Солнце (Кант);

2) это облако было захвачено Солнцем при его обращении вокруг центра Галактики (О. Ю. Шмидт); и

3) оно отделилось от Солнца в процессе его эволюции (Лаплас, Джинс и др.).

Многим отечественным ученым сегодня наиболее вероятным представляется первый вариант. Большую роль в его разработке сыграли труды О. Ю. Шмидта, который был крупным математиком и дал математическое обоснование целому ряду вопросов (например, распределение планет по расстояниям от Солнца, направление осевого вращения планет и др.).

Работы О. Ю. Шмидта успешно продолжены его учениками и последователями.

Как же представляется общая схема развития нашей планетной системы, исходя из предположения, что планеты и Солнце образовались из газо-пылевого облака? Предполагается, что около пяти миллиардов лет назад в таком облаке, пронизанном магнитными силовыми линиями, образовалось сгущение — протосолнце, которое медленно сжималось. Другая часть облака с массой примерно в десять раз меньшей медленно вращалась вокруг него. В результате столкновений атомов, молекул и частиц пыли туманность постепенно сплющивалась и разогревалась. Так вокруг протосолнца образовался протяженный диск, пронизанный магнитными силовыми линиями. В значительной его части происходило интенсивное конвективно-турбулентное перемешивание вещества. Это благоприятствовало быстрому перераспределению энергии, освобождающейся при гравитационном сжатии облака. В результате этого газо-пылевой диск существенно охлаждался.

Под действием светового давления легкие химические элементы водород и гелий «выметались» из близких окрестностей Солнца. И, наоборот, попадая на пылинки, световые лучи тормозили их движение вокруг Солнца. При этом пылевые частицы теряли свой орбитальный момент количества движения и приближались к Солнцу. Такой механизм торможения срабатывает даже в случае, если размеры частицы достигают нескольких метров. В конечном итоге это и привело к существенному различию в химическом составе планет, их разделению на две группы.

После достижения «критической» плотности пылевой диск распался на отдельные сгущения. Далее в результате взаимных столкновений происходило слипание отдельных пылинок и образование твердых тел, для которых американский геолог Т. Чемберлин еще в 1901 году ввел название «планетезимали». По оценкам В. С. Сафронова, превращение системы сгущений пыли в рой твердых тел продолжалось всего 10 000 лет на расстоянии Земли от Солнца и около 1 000 000 лет на расстоянии Юпитера. При этом масса планетезималей в области планет земной группы была значительно меньше, чем в области планет-гигантов.

Все это время протосолнце проявляло очень высокую активность. При мощных вспышках оно выбрасывало потоки заряженных частиц; двигаясь вдоль магнитных силовых линий, они переносили момент количества движения от Солнца к протопланетному облаку. Кроме того, благодаря столкновениям высокоэнергичных легких частиц (протонов и нейтронов) с веществом протопланетного облака, происходили определенные ядерные реакции. Именно таким путем и образовался большой избыток легких химических элементов — лития, бериллия и бора, которых в земной коре и метеоритах значительно больше, чем в атмосфере Солнца. В результате взаимных столкновений планетезималий происходил рост одних и дробление других. Со временем орбиты крупнейших из них приближались к круговым, а сами они превращались в зародыши планет, объединяя все окружающее вещество. Расчеты показывают, что рост Земли до современных размеров продолжался всего 100 миллионов лет.

Выпадание отдельных сгущений на Землю и ее сжатие привели к постепенному разогреву ее недр. На момент сформирования Земли температура в ее центре не превышала 800 oК, на поверхности 300 oК, а на глубине 300–500 км — около 1500 oК. Со временем все большую роль здесь играли процессы радиоактивного распада, при которых выделялось значительное количество энергии. В результате этого отдельные области земных недр разогрелись до температуры плавления. Наступила продолжительная фаза гравитационной дифференциации вещества: тяжелые химические элементы и соединения опускались вниз, легкие — поднимались вверх. Этот начальный этап формирования земной коры продолжался около 1 миллиарда лет.

На ранней стадии своего развития протоземля была окружена облаком небольших спутников, радиусы которых достигали 100 км. Со временем из них на расстоянии около 10 земных радиусов (60 000 км) сформировалась Луна. Одновременно началось ее медленное удаление от Земли, которое продолжается и теперь. Оно сопровождается уменьшением скорости вращения Земли вокруг своей оси. Безусловно, современная планетная космогония встречается еще со многими трудностями. Приведенная здесь схема развития Земли (аналогично формировались и другие планеты) — лишь одна из возможных гипотез, детально разъясняющих, как именно планеты и Солнце образовались из одного газопылевого облака и что сами планеты сформировались из роя холодных и твердых тел.[41] Существенно отличается от описанной выше «холодной» модели образования Солнечной системы — концепция известного шведского астрофизика, лауреата Нобелевской премии Ханнеса Альвена.[42] Он строит свою гипотезу, опираясь на теорию космической плазмы. Кроме того, Альвен считает, что невозможно понять механизм образования планет без одновременного уяснения процесса образования их спутников. Исходя из данного принципа, он приходит к выводу, что история эволюции Солнечной системы может быть описана с помощью введения пяти стадий развития, частично перекрывающихся во времени.

1. Ближайшая к нам стадия — в течение последних 4 миллиардов лет — медленная эволюция первичных планет, спутников и астероидов, приведшая к современному состоянию всех этих тел в Солнечной системе. При исследовании этой, позднейшей фазы эволюции (постаккреционной эволюции), подготавливается базис для реконструкции состояния, возникшего в результате более ранних процессов.

2. Предшествующая рассмотренной стадии — аккреционная эволюция сконденсировавшихся частиц, движущихся по кеплеровским орбитам и образовывающих планетезимали, которые в результате продолжающейся аккреции увеличиваются в размерах. Эти планетезимали являются зародышевыми предшественниками тех массивных тел, которые в настоящее время имеются в Солнечной системе. Тем самым реконструируются химические и динамические свойства совокупности первичных твердых частиц.

3. Для возникновения движения твердых частиц по кеплеровским орбитам вокруг Солнца и протопланет необходимо, чтобы на стадии эволюции, предшествующей аккреции, произошел перенос углового момента от этих центральных тел к окружающей среде.

4. Стадия локализации газа и пыли, формирующая среду вокруг намагниченных центральных тел, в тех областях, где позднее благодаря процессам аккреции возникают планеты и группы спутников.

5. Формирование Солнца — первого центрального тела, образовывающегося путем аккреции из первичного облака, из которого впоследствии возникла вся Солнечная система.

Следующий шаг, который делает в анализе Альвен, — попытка определить, какие именно процессы активно протекали на различных стадиях эволюции, или по крайней мере привести примеры процессов, заслуживающих более пристального изучения. В данной области науки, как, впрочем, и в других областях, очень трудно полностью обойтись без спекулятивных догадок, но, высказывая эти догадки, необходимо всегда сохранять тесный контакт с физической реальностью. Иначе старый миф попросту заменится на новый.

Прежде всего важно осознать, что в момент образования Солнечной системы условия в нашей части космического пространства во многих отношениях отличались от сегодняшних, но при этом были справедливы те же самые общие законы физики. Твердые тела, включая мелкие частицы и пылинки, двигались тогда по кеплеровским орбитам, подобным теперешним. В космическом же пространстве находилась плазма, параметры которой наверняка отличались от современных, но это отличие вовсе не было таким уж кардинальным.

В согласии с изложенными выше принципами Альвен предпринимает попытку реконструировать позднейшую стадию эволюции планет и спутников. Он считает: есть достаточно веские причины полагать, что в течение последних 4 миллиардов лет ни химический состав, ни элементы орбит планет и спутников существенно не изменились. На поверхности Земли и некоторых других небесных тел происходила медленная геологическая эволюция, а что касается элементов их орбит, то главные их параметры испытывали так называемые «вековые изменения», представляющие собой периодические вариации в довольно узких пределах значений. Здесь имеются два исключения: приливные эффекты изменили орбиты Луны и Тритона — спутника планеты Нептун. Почти во всех других отношениях Солнечная система 4 миллиарда лет назад выглядела абсолютно так же, как и сегодня.

Датирование с помощью радиоактивных изотопов показало, что этому долгому и устойчивому периоду предшествовал другой (продлившийся, по всей вероятности, несколько десятков или сотню миллионов лет), во время которого сформировалась Солнечная система.

Вещество, из которого сейчас состоят планеты и спутники, собралось воедино из некоторого раннего зародышевого или «планетезимального» состояния, когда оно было рассеяно в виде большого числа малых частиц. Последние двигались вокруг Солнца по кеплеровским орбитам, но при этом сталкивались друг с другом, и в результате в процессе аккреции возникли теперешние небесные тела. Кратеры, которые мы наблюдаем на поверхности Луны и других тел, представляют наглядные свидетельства «ливня» планетезималей, под воздействием которого эти тела выросли до своих современных размеров.

И действительно, сравнивая различные фотографии Луны, Меркурия, Марса и Фобоса, спутников планет-гигантов, полученные во время космических полетов, мы обнаруживаем, что кратерная структура их поверхностей настолько одинакова, что можно заключить следующее:

все эти твердые тела развивались сходным образом и в некоторых отношениях соответствуют различным стадиям одного и того же процесса эволюции. Этот факт делает возможной реконструкцию истории Земли. По Альвену, Земля должна была пройти через стадию чрезвычайно небольшого тела, по размерам подобного, к примеру, Фобосу — самому малому из известных к настоящему времени небесных тел. На поверхности Фобоса имеется ряд кратеров, образовавшихся в результате падения планетезималей. Когда Фобос достиг своего теперешнего размера, все планетезимали в окружающем его космическом пространстве оказались исчерпанными. Для Земли же, однако, это состояние было лишь промежуточным этапом: дождь планетезималей продолжался, и Земля росла все больше и больше. Когда мы смотрим на Луну, то видим перед собой как бы «моментальный снимок Земли» в том возрасте, когда она нарастила за счет аккреции только 1 % своей теперешней массы. Меркурий и Марс соответствуют более поздним этапам «детства» Земли, когда масса ее составляла 4 %, и, затем, 10 % современного значения. Из этих «фотографий» можно заключить, что ранняя история Земли была довольно монотонной — это непрерывный дождь планетезималей.

Следующий вывод: когда планетное тело достигает размеров Марса, оно начинает удерживать — или наращивать путем аккреции — некоторую атмосферу; кратеры на его поверхности постепенно выветриваются и изменяются под воздействием других геологических явлений. Эти процессы становятся все более отчетливо выраженными по мере роста тела, и когда оно достигает размеров Земли или Венеры, геологическая эволюция к тому времени стирает с его поверхности все свидетельства аккреции планетезималей.

Картина планетезимального состояния, полученная Альвеном, коренным образом отличается от лапласовского. Планетезимали фактически движутся по сильно эксцентричным и наклонным орбитам, а вовсе не по круговым орбитам лапласовского диска, по поводу которого некоторые космологи утверждают даже, что он есть не что иное, как чрезвычайно тонкий слой частиц, подобный кольцам Сатурна. Эти различия существенны для понимания процесса аккреции планет и их спутников, но они не менее существенны для следующего шага назад во времени — для реконструкции процесса аккреции планетезималей из частиц, сформировавшихся в плазме или захваченных ею.

Одна из центральных проблем во всех попытках реконструировать происхождение планетезимального состояния состоит в ответе на вопрос: каким образом частицы попали на орбиту? Этот процесс должен быть связан с переносом углового момента от вращающегося центрального тела — Солнца или планеты — к окружающим его планетезималям. На основе научно достоверных аргументов, заимствованных из различных областей знания, Альвен доказывает, что в современных условиях существует плазменный механизм, реализующий перенос углового момента от центрального тела к окружающей его плазме. В свободно вращающейся плазме устанавливается равновесие между основными действующими на нее силами, т. е. между гравитацией, центробежной силой и электромагнитными силами. Они уравновешивают друг друга таким образом, что в плазме силе тяготения совместно противостоят центробежная сила и магнитогидродинамические силы.

Что будет происходить в такой свободно вращающейся плазме с частицами, появляющимися в результате конденсации или захвата? Оказывается, когда эти частицы достаточно велики, чтобы двигаться независимо от магнитного поля, они будут образовывать тела, обращающиеся по кеплеровским эллиптическим орбитам с эксцентриситетом е = 1/3.

Если в одной и той же области пространства возникнет целый ряд таких тел, то они будут взаимодействовать друг с другом посредством, к примеру, соударений. Окончательный итог этого процесса состоит в следующем: сконденсированные тела будут двигаться по круговым орбитам, причем их расстояние до центрального тела будет составлять 2/3 расстояния, на котором сконденсировалась свободно вращающаяся плазма.

В итоге Альвен формулирует важные законы перехода от состояния свободно вращающейся плазмы в состояние кеплеровского движения:

1. На первой стадии возникают твердые тела, вращающиеся по эллиптическим орбитам с е = 1/3.

2. На заключительной стадии эксцентриситет орбит уменьшается.

3. Имеется некоторый общий коэффициент сокращения, равный 2/3.

К сожалению, в концепции Альвена (как, впрочем, и в любых других космогонических гипотезах) невозможно проверить полученные результаты с помощью наблюдательных данных, относящихся к современной эпохе, поскольку при теперешних условиях в Солнечной системе вряд ли можно ожидать наличия подобной конденсации.

Российский геолог академик Н. А. Шило внес важное уточнение в «горячую» гипотезу происхождения Солнечной системы. Ученый считает, что она образовалась из горячего спиралевидного облака, которое превышало в диаметре современную Солнечную систему и вращалось против часовой стрелки. Оно, в свою очередь, могло возникнуть в рукаве Галактики в условиях сжатия, неустойчивости и развития сильных газовых вихрей. В центре протосолнечного облака — спирали первого порядка — образовалось ядро, которое вобрало в себя основную массу (более 98 %) всего вещества спирали. На ее витках, где скапливалось остальное вещество, возникали местные завихрения — протопланетные спирали второго порядка; их ядра впоследствии преобразовались в планеты. На спиралях второго порядка, в свою очередь, формировались более мелкие вихри, или спирали третьего порядка, со своими ядрами — будущими спутниками планет. В соответствии с направлением вращения всего облака спутники в основном приобрели движение, согласное с вращением планет и Солнца, возникшего из центрального ядра.

Такая модель образования Солнечной системы снимает противоречия в распределении массы и момента количества движения между Солнцем, планетами и их спутниками.

Смутившая академика Шмидта разница между ними определилась неодинаковой угловой скоростью вращения ядра спирали первого порядка и ее ветвей, на которых образовались спирали второго и третьего порядков с протопланетными и протоспутниковыми ядрами.

Вспомним, что даже и ныне у Солнца, а также, вероятно, и у планет-гигантов угловая скорость внешних газовых слоев больше, чем внутренних. В свете этого находит объяснение и сильный рост удельного вращательного момента по мере удаления планет от Солнца. По-видимому, тут сказалось различие угловых скоростей витков спирали первого порядка, различие масс ядер в спиралях второго и третьего порядков, а также движение сложных вихрей со своими частными моментами количества движения, наконец, различие в запасах тепловой энергии.

Модель Н. А. Шило объясняет и сосредоточение спутников в средней части планетного роя — у Юпитера и Сатурна. Ближе к Солнцу спутники или вообще не возникали (Меркурий, Венера), или их сформировалось мало (Земля, Марс). Центральное ядро отбирало вещество, удаленное от протопланетных ядер спиралей второго порядка, не позволяло возникнуть там спиралям третьего порядка. В некотором же удалении, на витках спирали первого порядка, гравитационное влияние было слабее, поэтому в сгустках протопланетного вещества скапливались достаточно большие массы, развивались сильные вихревые движения — они формировали спирали второго порядка, чьи ядра затем превратились в планеты-гиганты. На витках этих спиралей вихревые движения преобразовывались в спирали третьего порядка, ядра которых стали потом планетными спутниками. На самых удаленных витках спирали первого порядка гравитационное поле центрального ядра было еще больше ослаблено. Здесь, вероятно, и термический режим оказался не столь мощным, что возбуждало менее сложные вихревые движения, и спутников формировалось меньше. Видимо, в зоне образования Плутона скорости были настолько малы, что на самом последнем витке спирали первого порядка происходило рассеивание вещества за пределы солнечной системы.

Гипотеза Н. А. Шило объясняет разброс плотностей и масс планет. Можно допустить, что концентрация протопланетного вещества в ядрах спиралей второго и третьего порядков шла при участии развивавшихся в вихрях центробежных сил. Силы притяжения ядер проявлялись на фоне мощных закручивающих движений. Подобные условия образования планет допускают и начальную дифференциацию протопланетного вещества. Это упрощает понимание механизма формирования внутренних сфер планет и истолкование их химического состава. Вероятно, протопланетное вещество было не холодным, как считал академик Шмидт, а горячим.

Тепловой режим (по крайней мере Земли) до сих пор связывают с распадом радиоактивных элементов. Но они в достаточных количествах есть только в самых кислых породах. А тех недостаточно, чтобы обеспечить наблюдаемые тепломассообменные процессы даже в литосферных слоях Земли. Еще труднее объяснить тепловой режим планет, внутренние сферы которых состоят из водорода или других легких элементов, а тем более спутников. Но если принять во внимание сильные вихревые движения нагретого вещества, энергия которого перешла в планеты или спутники в виде тепла и кинетической энергии движения, то путь для разрешения противоречий открывается.

Природные спирали — это своего рода застывшие вихревые движения, возбуждаемые неоднородными структурами силовых полей в различных средах, широко распространены. Они наблюдаются в том числе и в Космосе в виде звездных скоплений или туманностей. Они характерны для газовых и жидких сред, которые подчиняются законам Ньютона. Подобные спирали наблюдаются даже в гранитоидных массивах. В общем, вихри и спирали — это форма проявления турбулентных процессов, которые всегда преобладают над другими видами движения. Даже само Солнце находится внутри одного из спиральных витков нашей Галактики.

А его активность вызывается турбулентностью, сопровождаемой спиралевидными движениями, они зарождаются с определенной периодичностью в глубинах светила.

Необходимо объяснить также преобразование спирального движения в кольцевое, переход спиралей в кольца. Представляется, что при потере системой некоторого количества энергии подобный процесс совершенно закономерен, ибо ведет к энергетически выгодным структурам.

Это стадия, так сказать, распада спиралей и торможения вихревых движений, наступающая в период энергетического ослабления. Именно это наблюдается в Невадийском массиве гранитоидов, где фиксировано много загадочных колец из темноцветных минералов — более тяжелых компонентов, относящихся к ранней стадии кристаллизации магматического расплава.

Присутствие колец не удавалось объяснить до тех пор, пока геологу Н. А. Шило не посчастливилось открыть в том же массиве их предшественницы — спирали.

Спирали — это наиболее распространенная форма эволюционного развития и скопления вещества в макромире, где со всей силой проявляются релятивистские движения, а также в микромире — с иным классом взаимодействий. Развитие по спиральному типу идет и в органическом мире. Пример — гормоны роста человека, пептидные белковые системы и т. п.

После полного распада спиралей первого, второго и третьего порядков и образования из их ядер Солнца, планет и их спутников сюда были вовлечены чуждые тела, ставшие спутниками некоторых планет или поглощенные Солнцем. К ним можно отнести как раз те, что обращаются в обратном по сравнению с планетами направлении.

Исходя из сказанного, Н. А. Шило утверждает, что образование всей Солнечной системы происходило в две стадии. Первой была длительная история эволюции спиралевидного облака или сложной спирали. Второй — развитие уже сформировавшейся после распада спиралей всех трех порядков солнечной системы в целом и отдельных ее элементов.

Одна из последних уточненных гипотез относительно происхождения Солнечной системы принадлежит доктору химических наук, действительному члену ряда академий Н. В. Макарову.

Он исходит из хорошо обоснованного глобального вывода, что теория Большого взрыва неверна.

Не было такого момента в жизни Вселенной, когда вся материя пребывала в однойединственной (сингулярной) точке, а затем взрывом гигантской силы была разбросана во все стороны, образуя в этом полете звезды, галактики, другие космические структуры.

Материя существует вечно, переживая бесконечные циклы жизни и смерти. Из разрушенных, отживших свое миров она переходит в первоначальное протозвездное состояние, из которого создаются все новые и новые миры. Процесс этот происходит по совершенно четким законам. Один из них — закон кратности, или закон креста. Смысл его в том, что небесные тела не зарождаются поодиночке — только попарно, а затем пары удваиваются. Как же образовалась Солнечная система в свете теории Макарова? По утверждению ученого, протозвездная материя, оставшаяся после разрушенных миров, неоднородна. Состоит из вещества в газообразном и другом, особом состоянии. В каком — пока неизвестно: не можем его ни увидеть, ни зафиксировать приборами. Судя по всему, это то самое таинственное облако Оорта, из которого, как считается, формируются планеты и начинают свое бесконечное бродяжничество по Солнечной системе.

Но в каком бы состоянии ни находилась материя, она начинает закручиваться под воздействием силовых полей. Это закон Космоса: любое тело в нем обязательно вращается.

Далее происходит дифференциация материи. Газовые структуры по законам газодинамики засасываются в центр вращения, распределяясь по плоскости эклиптики. И вытягиваются в длинные «рукава», которые, увеличивая скорость вращения, разрываются на сгустки, постепенно принимающие сферическую форму. И тут вступает в действие закон креста. Сначала две сферы начинают вращаться вокруг некоего общего центра, одновременно вращаясь вокруг собственной оси. Затем две другие пары начинают тот же процесс. При увеличении скорости вращения сферы сжимаются, температура в них повышается. И наконец в Космосе вспыхивают минизвезды. Так родились Юпитер и Сатурн, а затем Уран с Нептуном.

Неизвестно, сколько миллионов лет сияли они в Космосе крохотными звездочками, пока не остыли, и теперь видны только в отраженном свете Солнца. Кстати, само Солнце, по Макарову, образовалось гораздо позднее. Вероятно, когда уже мини-светила начали угасать. Планеты же земной группы — Меркурий, Венера, Земля и Марс образовались из кометного материала, почерпнутого из так называемого облака Оорта. Это и определило их физико-химические параметры. В эту достаточно стройную систему не вписывается Плутон — девятая планета Солнечной системы.

Н. В. Макаров объясняет парадокс нестандартно: Плутон — не планета, а комета, каким-то образом задержавшаяся на околосолнечной орбите и теперь уже навечно привязанная к нашему светилу. Так же, как не планета, наша Луна. Это тоже бывшая комета, в свое время притянутая Землей.

Подлинно революционный взрыв в изучении Солнечной системы произошел после начала практического освоения Космоса, когда с помощью ракетных летательных аппаратов удалось вплотную приблизиться к большинству планет, сделать множество высококачественных фотоснимков и передать их на Землю. На Венере и Марсе была неоднократно осуществлена мягкая посадка спускаемых аппаратов, произведен забор и химический анализ грунта и атмосферы, проделано множество других бесценных экспериментов. А на Луне побывали не только искусственные автоматы, но и люди — посланцы Земли.

Итак, здесь были бегло охарактеризованы некоторые из возможных подходов к познанию эволюции нашего космического дома — Солнечной системы. Теперь, исходя из новейших естественно-научных данных, пришла пора познакомиться хотя бы кратко с отдельными «персонажами» вселенского спектакля под названием «Семья Солнца».

СОЛНЦЕ Для человека и человечества Солнце остается главным небесным светилом, дарующим Земле жизнь, свет и тепло. «Владыка времени и царь пространства» — так назвал дневное светило Байрон в «Манфреде», но одновременно оно же — «тень непознанного». Во все времена — независимо от месторасположения, эпохи и сословной принадлежности — к Солнцу обращались с самыми вдохновенными словами восторга и почитания.

Один из древнейших образцов лирической поэзии, высеченный на внутренней стене подземной гробницы, — Гимн Солнцу:

Великолепно твое появление на горизонте, Воплощенный Атон [Солнечный диск], жизнетворец!

На небосклоне восточном блистая, Несчетные земли озаряешь своей красотой.

Над всеми краями, Величавый, прекрасный, сверкаешь высоко.

Лучами обняв рубежи сотворенных тобою земель, Ты их отдаешь во владение любимому сыну.

Ты — вдалеке, но лучи твои здесь, на земле.

На лицах людей твой свет, но твое приближение скрыто. Когда исчезаешь, покинув западный небосклон, Кромешною тьмою, как смертью, объята земля.

–  –  –

Безвестному египетскому поэту вторит на другой стороне Земли хор инковсолнцепоклонников:

Душа Вселенной! О Солнце! Пламень!

Красот создатель — один ли ты?

Иль довременной какой причины Ты только вестник нам с высоты? …

–  –  –

(Перевод Константина Бальмонта) Как древние египтяне и инки — но только на равных — обращается к дневному светилу наш современник, великий космист и создатель новой для ХХ века «солнечной науки» — гелиобиологии Александр Чижевский:

Великолепное, державное Светило, Я познаю в тебе собрата-близнеца, Чьей огненной груди нет смертного конца, Что в бесконечности, что будет и что было… Такое отеческое и братское отношение к Солнцу испокон веков было присуще русскому человеку. К нему обращались в молитвах, песнях, заговорах. Квинтэссенцией такого космистского почитания главного небесного светила является плач Ярославны в «Слове о полку Игореве»: «Светлое и тресветлое сълнце! Всем тепло и красно еси: чему, господине, простре горячюю свою лучю на лады вои?..»

Сегодня Солнце остается таким же загадочным и недосягаемым, как и тысячи лет тому назад. Оно по-прежнему не только источник тепла, света и колоссальной энергии, но и сотен вопросов по поводу их происхождения. И большинство этих вопросов остаются без ответа или же порождают все новые и новые проблемы. Единственно, в чем не приходится сомневаться, — в твердо установленном факте: Солнце — одна из бесчисленных мириадов звезд и может многое рассказать об их природе и эволюции.

Однако беспрестанное указание на заурядность Солнца как обычной и ничем не выдающейся звезды плохо сопрягается с другим, на сей раз уже бесспорным выводом: именно Солнце явилось одним из главных «виновников» появления по крайней мере на одной из планет образованной им системы такого потрясающего и уникального явления, как жизнь. Если данный феномен действительно уникален, то в таком случае почему природа распорядилась именно Солнцу — рядовой среди мириадов таких же звезд — стать колыбелью жизни и разума? Если же никакой уникальности здесь не просматривается, то чисто логически напрашивается вывод: жизнь должна быть всюду, где есть подходящие условия, приблизительно сходные с околосолнечными.

Другими словами, само возникновение жизни — всего лишь заурядный момент в истории Вселенной и неизбежное следствие космической эволюции.

Земному наблюдателю раскаленный и режущий глаза солнечный круг кажется не таким уж и большим — даже меньше лунного.

Однако, как подсчитано астрономами, диаметр Солнца составляет примерно 13 тысяч км, то есть в 109 раз больше земного. При этом масса дневного светила в 333 тысячи раз больше массы Земли, а объем больше — в 1 миллион 304 тысячи раз. Даже совокупные размеры, масса и объем всех планет Солнечной системы меньше соответствующих характеристик центральной звезды.

Хорошо известно также, что Солнце — раскаленный газовый шар. В его глубинах температура достигает четырнадцати миллионов градусов, а давление — десяти миллиардов атмосфер.

Сферическая масса огненного газа удерживается собственным тяготением. Солнечный газ — явление особого рода, не имеющее ничего общего, например, с воздухом, которым мы дышим. Солнечный газ — это плазма, особое состояние вещества, когда атомы как бы становятся «голыми», теряют электроны со своих орбит и вместе с ними образуют высокотемпературную смесь — плазму. Основной химический элемент на Солнце — водород.

Он же — топливо для колоссальных, не вмещающихся в воображение термоядерных реакций — основы энергетической деятельности Солнца и в конечном счете источника тепла и света для всего живого и неживого на Земле, других планетах и околосолнечном пространстве. В процессе происходящих термоядерных реакций водород превращается в гелий, выделяя ежесекундно 4Ч1026 Дж энергии. Одновременно сквозь солнечную массу просачиваются биллионы биллионов фотонов, которые свободно устремляются в просторы Космоса, неся свет и тепло планетам Солнечной системы.

С точки зрения наиболее распространенной и, можно даже сказать, господствующей термоядерной концепции звездной энергетики, центральные слои Солнца — это термоядерный реактор, где происходит выделение энергии, а окружающие лучистые слои — как бы неимоверно толстые стенки котла, через которые энергия медленно просачивается наружу (рис. 80). Эти стенки служат дном другого котла, который можно считать заполненным как бы жидкостью: здесь вещество «кипит» и главный процесс — перемешивание отдельных масс. У этого котла имеется крышка из тонкого упругого и легко деформируемого вещества.

Снизу эта крышка постоянно атакуется вихрями кипящей плазмы. Благодаря своей упругости она все время колеблется подобно мембране звучащего динамика. Волны, распространяющиеся от этой мембраны, сильно разогревают газ окружающих внешних слоев солнечной атмосферы.[43] Считается, что рано или поздно термоядерное топливо в солнечных недрах закончится, и наше светило «погаснет». Но такое предположение — всего лишь одна из возможных (правда, господствующих в настоящий момент) гипотез. Она опирается на бесспорный факт ограниченности общей массы Солнца и, следовательно, запасов топлива; на довольно-таки простенькую аналогию, почерпнутую из звездной астрономии (раз известны остывающие звезды, значит, и Солнце ожидает то же самое); и, наконец, на следствия, вытекающие из космологической концепции Большого взрыва.

Однако существуют и альтернативные подходы. Можно с не меньшим успехом предположить, что запасы термоядерного топлива непрерывно возобновляются или пополняются (таковы закономерности космического вещественно-энергетического кругооборота). И привести не менее весомые аргументы. Строго говоря, утвердившаяся теория внутренних процессов, происходящих на Солнце, согласно которой его энергия обеспечивается термоядерными реакциями, тоже представляет собой всего лишь хорошо обоснованную и просчитанную астрономическую модель. Просто на сегодня мы не располагаем никакими иными знаниями, позволяющими объяснить источник и механизмы работы гигантского солнечного «котла». Но это ведь только сегодня! Напомним, что и о термоядерных реакциях нам стало известно чуть больше полувека назад.

Сошлемся еще на одну любопытную гипотезу, позволяющую лучше понять процессы, происходящие в глубинах дневного светила. Она исходит из предположения, что в недрах Солнца таятся частицы в пять раз тяжелее протонов. Они принадлежат к семейству частиц, из которых состоит более 90 % массы всей Вселенной. Но ни одна из них до сих пор не обнаружена. Их существование проливает свет на многие из сложнейших проблем, стоящих перед астрофизиками, и объясняет «недостаточность» нейтринного потока, льющегося из солнечных недр. Такую картину нарисовал британский астрофизик Джон Фолкнер. Загадки наших ближайших космических окрестностей он связал со всем мирозданием.

Еще в 1926 году известный английский астроном Артур Эддингтон писал: «Разумно надеяться, что не в слишком отдаленном будущем мы станем достаточно знающими, чтобы понять столь простую вещь, как звезда». А спустя полвека ученые оказались перед лицом кризиса, который наводит на мысль, что Солнце не такое уж и простое. Вскоре после пророчества Эддингтона оказалось возможным рассчитать изменения температур и давлений в его недрах. Большую часть последовавшего полстолетия астрофизики были счастливы, что смогли постигнуть природу Солнца, которая определяется термоядерными реакциями, протекающими в его недрах.

Из теории следовало, что реакции эти порождают потоки элементарных частиц нейтрино, устремляющиеся из солнечных глубин в космос. С веществом они вступают в реакции крайне неохотно — именно по этой причине и убегают из недр Солнца. Но когда на Земле были построены детекторы, достаточно чувствительные для регистрации и подсчета солнечных нейтрино, то была обнаружена лишь треть их потока, предсказываемая теорией. Результаты первых экспериментов были неоднократно подтверждены. После этого у ученых осталось две возможности.

Либо неверны теории ядерной физики, либо астрофизики еще не до конца понимают столь простую вещь, как звезда.

Проблему можно было бы разрешить, если произвольным образом уменьшить предсказываемую температуру в центре Солнца на 10 %. В таком случае количество излучаемых ней трино (в соответствии с теорией) совпадало бы с результатами наблюдений. Однако почему же Солнце должно быть внутри холоднее того, что требуют законы физики? Эту тайну пытались разгадать многие. Отгадок было столько же, сколько и астрофизиков. Одним из предположений, в частности, было такое: сердцевина Солнца быстро вращается; за этот счет давление там пониженное и температура соответственно меньше. Но никаких признаков подобного «сепаратного» вращения сердцевины обнаружить не удалось.

На этом «фоне» Д. Фолкнер совместно с Р. Джиллилэндом пришел еще к одному ответу.

Одной из причин сравнительно холодного состояния центра Солнца могло бы оказаться присутствие частиц нового типа, которые уносили бы тепло из его недр, не принимая участия в ядерных реакциях. «Облако» подобных частиц, перемешиваясь с протонами, участвующими в реакциях, должно уносить энергию наружу, охлаждая недра нашего дневного светила.

Ограничения, налагаемые законами физики, теорией строения звезд и фактом «пониженной»

интенсивности потока нейтрино, дали Фолкнеру и Джиллилэнду возможность составить довольно определенное представление об этих частицах.

Они должны быть в пять раз массивнее протонов. Поскольку они не принимают участия в термоядерных реакциях, то должны «замечать» другие частицы только за счет гравитации или «слабого» взаимодействия (но не «сильного», причастного к этим реакциям). Исследователи назвали ее «слабо взаимодействующей массивной частицей», или сокращенно «уимпом» (англ. Wimp — weakli interacting massive particle). Они написали соответствующую статью, но она не была опубликована и пылилась в кабинете Фолкнера семь лет.

Далее ситуация разительно изменилась. Астрономы, наблюдая за вращением галактик, обнаруживали все новые доказательства того, что звезды, входящие в их состав, должны быть погружены в какое-то темное «гало». Невидимого вещества в них, может, раз в десять больше, чем того, что составляют звезды. И космологи стали склоняться к теориям, которые требуют наличия темной материи, тоже в десять раз более массивной, чем звездная. Специалисты по физике элементарных частиц, занятые созданием единой теории сил природы, достаточно благосклонно относятся к теории суперсимметрии. Последняя требует гораздо большего числа элементарных частиц, чем обнаружено до сих пор. Когда Фолкнер проверил вычисления, то обнаружил, что «новые» частицы теории суперсимметрии, вошедшие в моду в космологии и физике элементарных частиц, довольно точно соответствуют описанию его «уимпов». Фолкнер также пришел к выводу, что структура Солнца, включающая эти частицы, определяет характер его пульсаций, которые так озадачивали астрономов. Изучение этих малых колебаний превратилось в целую науку — гелиосейсмологию.

Ничто, кроме умозрительных гипотез и аналогий, не говорит и в пользу утверждения, что Солнце остывает или находится на определенной стадии звездной эволюции, превращаясь, к примеру, из голубого гиганта, которым оно было когда-то, в «белого карлика», которым ему еще предстоит когда-нибудь стать. Наконец, любые абсолютизированные возрастные параметры являются, как правило, весьма условными и не выдерживающими критики со стороны упрямых фактов.

Так, в большинстве современных учебников, энциклопедий и справочников возраст Солнца оценивается в 4,5–5 миллиардов лет. Еще столько же ему отводится, чтобы «догореть». Между тем существуют расчеты, согласно которым энергии превращения водорода в гелий вполне достаточно для поддержания излучения Солнца в течение 100 (!) миллиардов лет. [44] Вот и думай — что, с чем и как совместить и от чего лучше отказаться. Если согласиться с большинством космогонических гипотез, согласно которым Солнечная система возникла одновременно, — то тогда придется «подогнать» возраст Солнца под возраст Земли, отказавшись заодно от хронологии, предписанной концепцией Большого взрыва да и от самой этой «теории». Конечно, сравнительно юный возраст Солнца можно попытаться спасти, если предположить, что древняя Земля — быть может, на самом деле остывшая звезда — была поймана солнечным притяжением или же сама приплыла в солнечную гавань. (Как тут не вспомнить космологию африканских догонов, согласно которой Земля, уже населенная человеком, была первоначально спутником Сириуса, но из-за грозящей космической катастрофы ей пришлось передислоцироваться — к сожалению, неизвестным техническим способом — в Солнечную систему).

Следует ли ожидать от Солнца какие-либо неожиданные сенсации? В любой момент! Так, совсем недавно американские астрономы обнаружили в спектре излучения солнечных пятен, в самой их сердцевине — воду! Пусть в молекулярной форме! Пусть в виде перегретого пара! Но все-таки это — вода! На Солнце!

Для самих астрономов, кстати, это не явилось слишком уж большой неожиданностью. Ибо вода в спектрах излучения некоторых звезд была обнаружена уже давно.

И серьезных наблюдателей, и простых обывателей всегда занимали явления, связанные с активностью дневного светила: солнечные пятна, вспышки и протуберанцы — гигантские огненные выбросы протяженностью в десятки тысяч километров. В Европе солнечные пятна были обнаружены одновременно с изобретением и использованием телескопа. А вот китайские астрономы ухитрились зарегистрировать их невооруженным глазом на тысячу лет раньше.

Солнечное пятно — это огромное, величиной нередко больше земного шара, но мелкое углубление на поверхности Солнца. Его температура на 1000К ниже температуры фотосферы, потому-то оно и воспринимается как темное и даже совсем черное. Пятна живут своей особой жизнью, рождаясь, умирая и перемещаясь по ходу вращения самого Солнца (рис. 81).

Протуберанцы также известны человеку очень давно и упоминаются даже в древнерусских летописях. Они неожиданно возникают в любом месте на поверхности Солнца и находятся в несомненной связи с солнечными пятнами. Обычно так: чем больше пятен, тем больше и протуберанцев. Однако понятно, что те и другие вызываются некоторыми общими глубинными астрофизическими процессами. Внешне протуберанцы напоминают языки пламени — с той только разницей, что гигантские солнечные выбросы могут фонтанировать на высоту до 100 000 км.

В местах активного возбуждения наблюдаются и вспышки, длящиеся по несколько минут и обусловленные поведением магнитных полей (рис. 82). Они сопровождаются мощным излучением света во всех видимых и невидимых диапазонах, радиоволн, различных частиц (корпускул) и т. п. (рис. 83). Все эти излучения оказывают прямое воздействие на физические и жизненные процессы, происходящие на Земле: радиопомехи, магнитные бури, полярные сияния и др. Последствия активной деятельности Солнца могут быть быстротечными или же сказываться на протяжении долгого времени.

А. Л. Чижевский установил, что энергетическая активность Солнца имеет прямое воздействие не только на органические тела, но и на социальные процессы и направленность исторического прогресса. «Вспышки» на Солнце, появление и исчезновение солнечных пятен, их перемещение по поверхности дневного светила, эти и другие явления, а также создаваемый ими весь комплекс астрофизических, биохимических и иных следствий — оказывают прямое и косвенное воздействие на состояние любой биосистемы, животного и человеческого организма в частности.

Этим обусловлены, к примеру, вспышки губительных эпидемий в старое и новое время человеческой истории, разного рода аномальные события в жизни людей: нервные взрывы, неадекватные психические реакции, положительные и отрицательные отклонения в социальном поведении. Выводы ученого подкреплены уникальными статистическими и экспериментальными данными. Они во многом перекликаются, дополняют и развивают концепции биосферы В. И. Вернадского и пассионарности Л. Н. Гумилева.

Перипетии личной жизни индивидуумов также подчинены ходу периодической деятельности Солнца и даже провоцируются ею. Сказанное особенно отчетливо прослеживается в жизни и деятельности великих государственных личностей, полководцев, реформаторов и т. д.

Ученый убедительно демонстрирует свой вывод на конкретных примерах из яркой, как метеор, жизни Наполеона Бонапарта. Оказывается, и он, этот «великан личного произвола», с точностью и покорностью должен был подчиняться в своих деяниях влиянию космических факторов. Например, разгар его деятельности может быть отнесен к периоду максимума солнечной активности; напротив, минимум военно-политической деятельности великого корсиканца совпадает с зафиксированным астрономами минимумом образования пятен на Солнце. Так, период спада явственно обнаруживается с конца 1809 года до начала 1811 года, когда в астрономических таблицах зафиксирован минимум солнечных пятен, то есть Солнце было малоактивно. В это время Наполеоном не было предпринято ни одного завоевательного похода, лишь сделан ряд бескровных приобретений. Между тем в год максимальной солнечной активности (1804) Наполеон достиг апогея славы и был увенчан императорской короной. В свое время консульство Наполеона совпало с минимумом солнцедеятельности (1799), когда революционный подъем во Франции сошел на «нет» и в честолюбивом артиллерийском офицере смогли свободно воспламениться абсолютистские наклонности.

Свой программный космистский манифест, повергнувший в шок ученых-педантов и стоивший автору карьеры, а впоследствии и свободы, Чижевский завершает гимном Солнцу,

Человеку и Истине:

«Когда человек приобретет способность управлять всецело событиями своей социальной жизни, в нем выработаются те качества и побуждения, которые иногда и теперь светятся на его челе, но которые будут светиться все ярче и сильнее, и, наконец, вполне озарят светом, подобным свету Солнца, пути совершенства и благополучия человеческого рода. И тогда будет оправдано и провозглашено: чем ближе к Солнцу, тем ближе к Истине».[45]

ДВЕ СЕСТРЫ И СЕМЬ БРАТЬЕВ

Вместе со спутниками больших и малых планет в Солнечной системе насчитывается 52. Да еще астероиды, точного числа которых никто не знает: параметры орбит установлены — примерно для 3000; соответственно присвоены и постоянные порядковые номера. Но главных планет всего 9. Потому-то и названы они в подзаголовке двумя сестрами и семью братьями.

Только у двух из них — Земли и Венеры — женские имена, у остальных — мужские.

МЕРКУРИЙ Самая приближенная к Солнцу планета внешне похожа на Луну: вся ее поверхность испещрена кратерами — следами-оспинами, оставленными от ударов метеоров. [46] Меркурий полностью оправдывает свое наименование — в честь пронырливого и вездесущего античного Бога — покровителя не одних только путешественников, торговцев, ученых-интеллектуалов, магов и алхимиков, но также воров и мошенников. Нрав у него — выходящий за пределы общепринятых норм небесной механики. Как известно, все планеты вращаются вокруг своей звезды-пастуха по эллиптическим орбитам, расположенным примерно в одной плоскости. И только орбита Меркурия отклоняется от заданных математических канонов. Впоследствии эта загадка стала одним из стимулов разработки общей теории относительности.

Меркурий обращается вокруг Солнца по сильно вытянутой эллиптической орбите, наклоненной к плоскости орбиты Земли (эклиптике) на 7°. Его среднее расстояние от Солнца составляет 58 млн. км, или 0,39 а. е. Орбита Меркурия такова, что его расстояние от Солнца меняется от 0,31 до 0,47 а. е. Среди планет Меркурий рекордсмен-спринтер: он движется по орбите со скоростью, достигающей 54 км/с, что почти вдвое больше скорости Земли. На один оборот вокруг Солнца он затрачивает 88 земных суток.

Еще совсем недавно (до полета автоматических межпланетных станций) считалось, что вращение Меркурия синхронно с его движением вокруг Солнца, что он всегда обращен к Солнцу одним полушарием, подобно тому как Луна всегда обращена к Земле одной стороной.

Действительность оказалась куда интереснее. И как это ни странно, чтобы узнать истину, не понадобилось космических ракет. Более того, космический аппарат был бы мало полезен в этом деле. Решение было получено с помощью сравнительно нового средства исследования планет, которым можно пользоваться, «не выходя из дома». Это — радиолокация планет, которая отпочковалась от военной радиолокации сразу же после Второй мировой войны. Сейчас с ее помощью удается получить результаты, которые трудно не назвать чудом. Хотя непосредственная зоркость радаров намного уступает оптике, изображение больших участков поверхности Венеры, например, впервые было получено именно с помощью радиолокации. А измеренный радиус Меркурия оказался лишь на 5 км меньше действительной величины (2440 км).

При локации Меркурия радиоимпульс сначала отражается небольшим «пятачком» в центральной части планеты и со скоростью света устремляется во все стороны, в том числе и к антенне пославшего его радиолокатора. Возвратившаяся часть импульса так слаба, что необходимо все могущество современной радиотехники, чтобы, как говорят радиоинженеры, «выделить» его. Вслед за первой частью импульса придет вторая, отраженная примыкающим к «пятачку» бесконечно узким кольцом, удовлетворяющим единственному условию: расстояния от любой его точки до антенны радиолокатора равны. А там на очереди третье, четвертое, пятое кольца и так до последнего, ограничивающего диск планеты. (Конечно, в действительности отдельных колец не существует — процесс отражения непрерывен.) Дальняя от нас сторона планеты окажется в радиотени и ничего не отразит.

Таким образом, изучая отраженные с разным запаздыванием импульсы, можно, например, найти, как меняются радиоотражательные свойства планеты по кольцам на данной длине волны.

Но главное — впереди. Так как планета вращается, часть импульса, отраженного каждым кольцом, не совсем однородна.

Северная и южная полярные области отразят его одинаково, однако частота, на которой будет принят отраженный ими сигнал, не окажется в точности равной частоте посланного импульса. В силу того, что в своем движении вокруг Солнца планеты либо удаляются друг от друга, либо сближаются, возникает эффект Доплера и частота смещается. Намного ли? Для Меркурия наибольшее смещение сигнала радиолокатора, который работает на длине волны 10 см, составит 500 кГц — огромная величина по радиотехническим меркам. Однако этим дело не ограничивается. Меркурий вращается, поэтому западная (левая) его сторона движется навстречу импульсу, вызывая дополнительный положительный доплеровский сдвиг, а восточная (правая) — удаляется и дает отрицательный доплеровский сдвиг (рис. 84). Эти сдвиги (их называют остаточными разностями), конечно, намного меньше основного сдвига, но для Меркурия составляют 32 Гц — вполне измеримую величину.

В 1965 году самый большой радиотелескоп мира, находящийся в Аресибо (Пуэрто-Рико), был использован для локации Меркурия. После анализа остаточных разностей возвратившегося сигнала можно было определить скорость вращения планеты. Однако полученные таким путем данные никак не согласовывались с уже заранее записанным в конце задачи ответом, основанным на оптических наблюдениях. И тогда ученые поступили так же, как поступает школьник, у которого не сходится ответ, — они сказали, что в задачнике ошибка! И были правы.

Прежний ответ был получен из наблюдений трудноразличимых пятен на планете.

Астрономы сходились в том, что при сближении с Землей Меркурий всегда повернут к ней одной стороной. И это было верно, но и только! Ведь из этого был сделан вывод о синхронном движении Меркурия. Конечно, можно было допустить, что между противостояниями Меркурий делает целое число оборотов вокруг своей оси, но это представлялось маловероятным. И тем не менее вращение планеты вокруг оси таково, что, проходя перигелий (ближайшую к Солнцу точку орбиты, когда их разделяет только 0,31 а. е.), Меркурий поочередно обращен к Солнцу то одной, то другой стороной. За две трети года он завершает полный оборот вокруг своей оси.

Засвидетельствовав, таким образом, свое уважение к владыке — Солнцу, Меркурий к тому моменту, когда он окажется на линии Солнце — Земля, успевает повернуться к последней всегда одной и той же стороной.

Во всем Меркурий поражает своей непохожестью на всех остальных братьев и сестер общей солнечной семьи. Несмотря на близость к центральному светилу, отчего Солнце предстает там как огромный огненный шар, несравнимый с привычной земной картиной, — меркурианские сутки необычайно продолжительные: они равны 176 земным суткам, то есть длятся по земным меркам более полугода. В результате движение Солнца по меркурианскому небу не похоже на привычный нам «механизм» солнечных часов.

Благодаря сложению неравномерного движения планеты по вытянутой орбите с медленным вращением, Солнце останавливается в своем видимом движении по небу Меркурия и даже возвращается назад. В некоторых зонах планеты восходы и заходы Солнца наблюдаются дважды за одни сутки, причем и восходы и заходы наблюдаются как на востоке, так и на западе. Все это светопреставление (иначе не скажешь) длится регулярно по две недели «утром» и «вечером», если здесь годятся эти привычные нам понятия. Очень долгие день и ночь, по-видимому, почти не подвержены сезонным изменениям — полярная ось планеты практически перпендикулярна плоскости орбиты. Плоскость экватора наклонена к ней менее чем на 1°.

В итоге поверхность, обращенная к Солнцу, раскаляется до температуры плавления олова, свинца и цинка (+ 430 °C). Напротив, ночная сторона планеты превращается в это время в естественный суперхолодильник (-173 °C). Однако очень высокие температуры только у поверхностного слоя. А он сильно измельчен, имеет поэтому низкую теплопроводность и служит прекрасной теплоизоляцией. Данные радиоастрономии показывают, что уже на глубине нескольких десятков сантиметров температура постоянная, 70–90 °C выше нуля. Низкая теплопроводность приводит к тому, что после захода Солнца поверхность Меркурия очень быстро остывает. Уже через 2 часа температура падает до -140 °C, а ночью может достичь C.

Измерения температуры вдоль трассы полета космического аппарата позволяют исследовать физические свойства пород, из которых сложена поверхность планеты. Делается это так. Измерения ведутся дистанционно с помощью радиометра, прибора, измеряющего тепловой поток, излучаемый поверхностью. Если днем на фоне нагретого окружающего района будет обнаружен участок более холодный и обладающий такими же отражательными свойствами (что определяется путем фотометрии), то это может означать только, что тепло куда-то уходит. Куда? Если поверхность сухая, как у Меркурия и Луны, то при постоянстве ее излучательных свойств происходит отток тепла в глубину. Про подобный участок говорят, что он обладает повышенной «тепловой инерцией», которая определяется плотностью и коэффициентами теплоемкости и теплопроводности. Например, холодным будет скальный массив, окруженный тем же материалом, но в сильно раздробленном состоянии. Ночью раздробленный материал быстро остынет, излучив свои небольшие запасы тепла, скала же будет ярко светиться в инфракрасных лучах.

Их немного, что говорит об однородности поверхности планеты.[47] В таких экстремальных условиях трудновато надеяться на существование жизни в какихлибо известных земных формах. Однако высокие температуры мало смущают ученыхоптимистов (их всегда были единицы) и писателей-фантастов, иногда задающих тон развитию науки. Даже в узких рамках традиционной биохимической схемы допускается (пускай — гипотетически!) возможность кремниевой формы жизни, в основе которой — не белок и углерод, а обыкновенный песок — кремний. По несложным расчетам, существам и растениям, устроенным подобным (повторяем — гипотетическим) образом, не страшны высокие температуры и даже более благоприятны, чем низкие. А дальше уже — насколько хватит воображения. Читателю, вероятно, приходилось сталкиваться в научно-фантастических романах с разумными существами — обитателями огненных стихий, плавающими на гранитных плотах по раскаленной магме. Для подобных «гуманоидов» жизнь на раскаленной Солнцем стороне Меркурия — просто рай.

ВЕНЕРА Венера — одно из самых известных и почитаемых в древности небесных светил. Третий по своей яркости объект на земном небосклоне после Солнца и Луны, она прекрасно заметна — особенно в утренние и вечерние часы. Отсюда общее для многих народов название — Утренняя и/или Вечерняя звезда. В старину они, как правило, считались двумя разными «звездами». Лишь в результате длительных астрономических наблюдений и точных вычислений была установлена их идентичность.

Особо любима всеми была Утренняя звезда — Денница, по космистским представлениям русского народа, который точно так же называл и утреннюю зарю. Это не ошибка, не неточность, не безразличие. Напротив — отголосок архаичных общеарийских и доарийских мифологических воззрений. Древние арии обожествляли Утреннюю зарю (ведийскую Ушас), Деву Зарю — Царь-Девицу более позднего русского фольклора). Считалось, что каждое утро она рождала не только Солнце, но и Утреннюю звезду. Ее название становилось разным у разных народов по мере отпочкования их от единой, некогда этнолингвистической и социокультурной общности. Некоторое мифологическое ядро архаичных представлений при этом обязательно сохранялось, что хорошо видно именно на примере Утренней звезды и ее последующего обожествления.

Между прочим, эти древнейшие взгляды, относящиеся к глубинному общекультурному пласту, просматриваются и в Библии.

В Книге Пророка Исаии содержится фрагмент, относящийся к доветхозаветным временам, где Венера названа Денницей (правда, в мужском роде) — сыном Зари, что вполне соответствует доарийскому синтетическому миропониманию:

«Как упал ты с неба, Денница, сын зари! разбился о землю, поправший народы. А говорил в сердце своем: „взойду на небо, выше звезд Божьих вознесу престол мой, и сяду на горе в сонме Богов, на краю Севера…“»

(Ис. 14, 12–13).

В приведенном отрывке, смысл которого был не вполне ясен уже самому библейскому пророку, не говоря уже о его слушателях и современных читателях, содержится невнятная ссылка на какие-то древние знания, касающиеся не только Венеры-Денницы, но и космического катаклизма, связанного с падением (или посадкой) огнеобразного объекта с небес на Землю.

Здесь же глухое упоминание о Полярной прародине человечества на Крайнем Севере и о Горе Богов — корреляте общемировой Вселенской горы Меру.

Планета Венера не случайно названа в честь Богини любви. Точно так же она именовалась и в других культурах. Тому есть достаточно простое объяснение. Известно, что на рассвете к влюбленным возвращается эротическая страсть и взаимное вожделение. Вполне вероятно, что это действительно имеет космическую обусловленность, связанную, скорее всего, с восходом Солнца и его энергетическим влиянием на мужчину и женщину. Однако в далеком прошлом утреннее пробуждение страсти приписывалось не Солнцу, а Утренней звезде. Потому-то она и стала символом и покровительницей влюбленных у многих древних народов, а не только в Древнем Риме, откуда по имени Богини любви и сексуальных страстей в современную науку перекочевало название второй по счету от центрального светила планеты Солнечной системы.

Не менее (а, может, даже более) колоритной в сравнении с эллинско-римским Божеством любви была аккадская (ассиро-вавилонская) Иштар — Богиня бесконтрольной и необузданной сексуальной страсти (рис. 85). В Месопотамии она так же, как и в Средиземноморье, олицетворяла Утреннюю звезду.

Среди многочисленных эпитетов Иштар — Владычица Богов, Царица царей, ДеваВоительница, Яростная львица и др. Культ Иштар (а значит, и Утренней звезды) был грубо эротичным, связанным с разнузданными празднествами, их непременным условием была полная сексуальная раскованность, массовые оргии, храмовая проституция, публичное принесение в жертву девственности и самооскопление.

Образ коварной, похотливой и мстительной Иштар рисует нам одна из величайших книг всех времен и народов — Эпос о Гильгамеше («О все видавшем»). Здесь Богиня Утренней звезды предстает во все содрогающей красоте Женщины-соблазнительницы, чья «любовь — буре подобна, двери, пропускающей дождь и бурю, дворцу, в котором гибнут герои».

Считая, что Гильгамеш принадлежит ей по праву матриархата (здесь несомненны отзвуки эпохи Владычества женщин), как всякий мужчина (даже шире — любое существо мужского рода, ибо она не брезговала и животными), Иштар безапелляционно предлагает свою любовь Герою:

И владычица Иштар на него устремила очи,

Устремила очи на красоту Гильгамеша:

«Ну, Гильгамеш, отныне ты мой любовник!

Твоим вожделеньем я хочу насладиться.

Ты будешь мне мужем, я буду тебе женою…»

(Перевод Николая Гумилева) Но целомудренный герой отказывается от навязываемого счастья, ссылаясь на бесстыдную неразборчивость Богини и тысячи ее жертв — загубленных любовников. Отвергнутая Иштар, как и полагается разъяренной женщине, мстит изощренно: насылает на родной город Гильгамеша — Урук — чудовищного быка, и тот, подобно слону, сотнями давит ни в чем не повинных жителей и умертвляет их своим смертоносным дыханием.

Иштар — во многом собирательный мифологический образ. Она впитала и объединила многие черты других, более ранних — шумерских, угаритских, хурритских и пр. — Богинь, в том числе олицетворявших Утреннюю звезду. У шумерийцев она звалась Инанной и считалась дочерью Бога Луны Нанны и сестрой Бога Солнца Уту.

Ей, Богине любви и Утренней звезды, слагались возвышенные гимны:

Госпожа моя смотрит с небес, Смотрит она на все земли, Смотрит на народ Шумера, бесчисленный, словно овцы … Хвалу тебе пою, великая Инанна.

Владычица утра сияет над горизонтом.

Древнесемитское имя Богини плодородия, которая впоследствии превратилась в Иштар, — Астарта. В более поздние времена ее культ проник в Египет, Карфаген и распространился по всему эллинистическому миру. Но для нас, в соответствии с заявленной темой, интерес представляет совсем другое. Во-первых, у Астарты был мужской двойник с однозвучным именем — Астар (рис. 66).

Во-вторых, корневая основа обоих имен — astr — связана с космической семантикой, означает «звезду» и является общей не только для семитских, но и для индоевропейских народов, что свидетельствует и о взаимодействии культур, и об их едином происхождении.

Именно на данной лексической основе образовалось греческое слово astron — «звезда» (добавим также astrapi — «молния», «блеск», «сияние»), от которого в конечном счете произошло и современное название науки — астрономия (а также понятие «астрология»).

Эллинская астральная мифология также изобилует интересными подробностями об Утренней звезде, многие из которых, несомненно, восходят общеарийским космологическим представлениям. Здесь для нее нередко — особенно в архаичный период греческой истории — использовался вавилонский эквивалент — Звезда Иштар. Судя по всему, общемировая традиция и повлияла на то, что она стала называться Звездой Афродиты (у римлян, соответственно, Венерой). На ранних этапах древнегреческой истории наименование Звезды любви было более прозаичным: Фосфорос — «Светоносная» для Утренней звезды (так ее называл, к примеру, знаменитый философ Демокрит) и Геспер — «Вечерняя» — для ее закатного двойника (как видим, эллины считали эту «блуждающую звезду» двумя разными небесными объектами).

С вечерней ипостасью Венеры-Геспер связан цикл полузабытых-полуутраченных древнегреческих мифов, имеющих явно доолимпийское происхождение. Современный читатель слабо ориентируется в глубинных пластах античного мировоззрения.

Однако ему наверняка известен собирательный образ гесперид — четырех нимф (иногда называется число, на одно меньшее) — хранительниц плодов вечной молодости (в русском фольклоре им соответствуют «молодильные яблоки»), живущих на краю света. Географически это выглядело столь далеко и недосягаемо, что требовалось совершить подвиг, равный Богам, чтобы добраться до Страны гесперид и заполучить их волшебные яблоки. Такой подвиг — десятый по счету — удался лишь одному смертному — великому герою Древней Эллады Гераклу. По пути на край Земли он повстречал держателя неба Атланта, который чуть было не обманул доверчивого сына Зевса и не водрузил ему на плечи небесный свод.

Данный сюжет известен русскому читателю чуть ли не со школьной скамьи. Но дело все в том (и внимание на этом обычно не акцентируется), что, согласно Диодору Сицилийскому, титан Атлант как раз и являлся отцом гесперид. Матерью же их была титанида Гесперида, дочь титана Геспера. Геспер — персонифицированный и мифологизированный образ Вечерней звезды — Геспер-Венеры. Подробности данного сюжета были утрачены уже самими эллинами, которых мало интересовала доолимпийская история и мифология. Культ же Геспера восходит ко временам легендарной Атлантиды. Сам титан был родным братом Атланта и совместно с ним управлял великой страной, погрузившейся на дно океана. Но после олимпийского переворота, когда Зевс наказал восставших против него титанов, Гесперу удалось скрыться. Если его брату Атланту суждено было до скончания веков держать на плечах всю тяжесть небес, то Геспер предпочел скрыться в Космосе. Да-да, это не оговорка! Чудом сохранилось свидетельство

Гигина — осколок древних преданий (или хроник?):

Геспер — один из первых европейских (точнее, атлантийских) астрономов, — наблюдая небо на вершине высокой горы, загадочно исчез, превратившись в Вечернюю звезду. Данное обстоятельство вполне можно интерпретировать в том духе, что Геспер улетел на Венеру или еще дальше в Космос с помощью инопланетян или без оной (о палеоконтактах далее см.

специальный раздел).

В римской мифологии Геспер превратился в хорошо всем известного Люцифера:

Ниже Солнца вращается огромная планета, называемая Венерой, которая попеременно перемещается в двух направлениях и которая самими своими названиями соперничает с Солнцем и Луной. Так, когда Венера появляется первой, восходя до рассвета, ее называют Люцифер, словно она — второе Солнце, которое торопит наступление дня. Когда же, напротив, она сверкает после захода Солнца, то именуется Геспер, ведь она словно продлевает день, замещая Луну.… Величиною она превосходит все прочие светила, а блеск ее столь ярок, что только ее лучи рассеивают мрак.

Плиний Старший. Естественная история. II,36–37 В дальнейшем усилиями нескольких поколений толкователей Священного писания Люцифер стал синонимом Сатаны. На самом деле имя Люцифера этимологически связано со светоносным началом (Lucifer — «светоносный», что является калькой греческого Фосфорос) и по истокам своим является одним из латинских названий Утренней звезды — Венеры. (Как видим, Геспер — Вечерняя звезда — в процессе взаимодействия эллинской и римской культур и в результате семантических трансформаций превратился в Люцифера — Утреннюю звезду.) Но почему именно Люциферу так не повезло? Почему именно ему суждено было стать «исчадием ада»? С полной определенностью ответить на поставленный вопрос трудно. Возможно, перед нами результат противоборства различных астральных культов: побежденного — венерианского и победившего — солнечного или лунного. Возможно также, что астральная семантика играла при этом побочную, номинально-символическую роль. Например, спустя два тысячелетия победа над фашизмом во Второй мировой войне символически истолковывалась как торжество пятиконечной звезды над свастикой. При этом первичный астральный смысл данных символов не имел абсолютно никакого значения. Свастика, как известно, — древнейший доарийский символ солнечного и космического круговорота — была беззастенчиво присвоена нацистами и объявлена символом их человеконенавистнической идеологии. После краха третьего рейха свастика оказалась настолько дискредитированной, что до сих пор вызывает искреннее отвращение у большинства непросвещенных обывателей, и от нее шарахаются, как от чумы. Хотя свастика — древнейший смыслонасыщенный символ человечества — встречается, к примеру, у многих народов российского Севера и Кавказа, на архаичных русских вышивках, в буддийской и индуистской символике, в орнаменте народов обеих Америк и Океании, на расписных этрусских и древнегреческих вазах, на предметах, найденных Шлиманом при раскопках Трои, и т. д. и т. п.

Впрочем, известна небезуспешная попытка реабилитации Люцифера. Она принадлежит великому Байрону в одном из величайших его творений — драме-мистерии «Каин». Здесь Светоносный Дух — Люцифер выступает носителем глубочайшего космистского и гуманистического мировоззрения.

В монологах Люцифера — проводника мятежного Каина по просторам Вселенной — рисуются грандиозные картины ее безграничности, эволюции, начала и конца:

… Но что бы ты подумал, Когда б узнал, что есть миры громадней, Чем мир земной, что есть созданья выше, Чем человек, что их число несметно, Что все они на смерть обречены, И все живут, все страждут?

На вопрос Каина: «Так мир не нов?» — Люцифер продолжает развивать свою космическую философию:

… Не более, чем жизнь.

А жизнь древней, чем ты, чем я, и даже Древней того, что выше нас с тобою.

Есть многое, что никогда не будет Иметь конца… Во времена Аристотеля планеты уже назывались по Богам: звезды — Зевса (Юпитер), Крона (Сатурн), Ареса (Марс), Афродиты (Венера). Последняя «блуждающая звезда» считалась, по эллинской теогонической традиции, дочерью титана Астрея (в его имени также присутствует «звездный корень» — astr) и титаниды Эос — Утренней зари (их детьми были также Западный, Южный и Северный ветры). Эос — Утренняя заря, в соответствии с архаичными индоевропейскими представлениями о зорях вообще, олицетворяла, помимо всего, бесконтрольное сексуальное влечение, являясь в данном отношении точной функциональной копией любвеобильной Иштар. В позднейшей мифологической интерпретации Эос была наказана Афродитой, которая застала Богиню Утренней зари в объятиях своего мужа Ареса — Бога войны: и без того похотливой титаниде была внушена роковая страсть к смертным юношам;

после чего Эос принялась не без азарта соблазнять их всех подряд. (Для полноты картины следует упомянуть еще одно «звездное имя» — титанида Астерия, сестра титаниды Лето — матери Аполлона и Артемиды (следовательно, их тетка): превратившись в «звездный остров», она укрывала младенцев-племянников вместе с матерью от преследования ревнивой Геры.) Такова легендарная предыстория, связанная с планетой Венерой. Что касается ее научной истории, то на протяжении многих лет Венера считалась главным кандидатом на увеличение числа наделенных жизнью планет Солнечной системы. В пользу такого допущения свидетельствовало достаточно бесспорных фактов: размер, близкий к земному; неудаленность от Солнца — источника живительной энергии — и, главное, наличие атмосферы, открытой еще Ломоносовым. Что из того, что она сплошь закрыта облаками — парниковый эффект может способствовать бурному развитию — если не животных, то уж растений наверняка. Ветры там сильные? (Один из популярных в 1960-х годах научно-фантастических романов и фильм по нему так и назывался — «Планета бурь»). Подумаешь — ветры! Подуют и перестанут! Ученые, популяризаторы, журналисты, писатели, поэты красочно и с большим воображением описывали идеальные условия для зарождения и расцвета жизни на Венере, вплоть до появления разумных существ:

На далекой звезде Венере Солнце пламенней и золотистей.

На Венере, ах, на Венере У деревьев синие листья.

–  –  –

Венерианская эйфория продолжалась до первых стартов космических ракет с исследовательской аппаратурой. В начале 1960-х годов, пробив непроницаемую пелену венерианских облаков, на поверхность планеты стали опускаться советские космические зонды, начиненные приборами и передающими устройствами. На Землю полетела сенсационная информация. Увы, прозаическая действительность и упрямые факты начисто опровергли самые смелые мечты и радужные надежды. Венера оказалась менее всего приспособленной к жизни в ее земном понимании. Температура на поверхности — около 450 °C. (Для наглядности напомним, что температура в духовке газовой плиты не превышает 260 °C — иначе там сгорят все пироги.) Это означает, что такие металлы, как свинец, олово и цинк, могут существовать там только в расплавленном состоянии. Атмосфера Венеры состоит не из кислорода и азота, как думали раньше, а из углекислого газа.

Кроме того, в ней много паров серной кислоты и других ядовитых веществ. По сравнению с земным давление на поверхности «Планеты любви» достойно Дантова «Ада» — примерно 90 атмосфер. Это соответствует давлению в океане на глубине 900 м, недоступной ныряльщикам даже со специальным снаряжением.

Вращение Венеры чудовищно медленное: одни сутки, то есть полный оборот вокруг собственной оси, равны там восьми земным месяцам. Вращение происходит в направлении, обратном земному. Солнце не пробивается сквозь плотные облака, но если его зафиксировать специальными приборами, то окажется: оно всходит на западе и заходит на востоке. Мало вдохновлял и венерианский ландшафт: на обработанных компьютером фотографиях, полученных после мягкой посадки спускаемых аппаратов, видна лишь безжизненная каменистая почва. Последующие исследования Венеры — и, в частности, компьютерная обработка американскими учеными массива полученных данных — позволили воспроизвести картины венерианского пейзажа со всеми подробностями.

Радиолокационные карты, полученные с помощью автоматической межпланетной станции «Магеллан», заставили ученых поломать голову. Впечатление такое, как будто Венера пережила страшную катастрофу. Случиться такое могло около полумиллиарда лет назад, но поверхность планеты до сих пор хранит следы космической трагедии. Рельеф поверхности Венеры во многих местах напоминает морщины — предположительно остатки застывшей лавы, которая когда-то вырвалась на поверхность от удара колоссального небесного тела. Так во всяком случае считают астрономы из Корнеллского университета. По их мнению, космический удар был столь мощным, что кора планеты оказалась расплавленной.

Последствия дают о себе знать и поныне:

венерианская поверхность до сих пор как следует не остыла.

И все же хочется верить: Венера — самая близкая и единственная планетная сестра Земли — не окажется космической фурией для астронавтов, которые неизбежно когда-нибудь посетят планету Богини любви, что так заворожительно и таинственно смотрится утром и вечером на земном небосклоне.

МАРС Невероятное число легенд и фантазий породил ближайший наш собрат по Солнечной системе — планета Марс! Начиная с истории своего наименования. За сходство с цветом крови его нарекли в честь Бога Войны звездой Ареса у эллинов, а затем — по аналогии — звездой Марса — у римлян. Правда, грозный и кровожадный римский Бог первоначально олицетворял жизнеутверждающее весеннее плодородие и лишь впоследствии взял на себя воинские функции.

И звался он сначала по-весеннему — Март (точнее — Martis). Отсюда и наименование первого весеннего месяца во многих (в том числе и в русском) языках.

Хорошо известно, что надежду на встречу с собратьями по разуму долгое время связывали прежде всего с Марсом. Каналы Марса! Ничего так не будоражило читающую публику после коперниковского переворота, как сенсационное открытие итальянца Джованни Скиапарелли (1835–1910): на поверхности Марса прекрасно просматриваются прямые и пересекающиеся друг с другом «просеки» явно искусственного происхождения. Воображение дополняла смелую гипотезу самыми невероятными подробностями. Но если б только одни каналы! В 1897 году английский астроном Ф. Гальтон наблюдал на поверхности Марса мерцающую точку и тотчас же оповестил весь мир о сигналах, посылаемых марсианами. В 1911 году французские астрономы Ж. и В. Фурнье увидели на Марсе еще более яркую вспышку, но, в отличие от первооткрывателя марсианского маяка, решили, что это извержение вулкана. Ученый мир с ними согласился. И в который раз сел в лужу. Ибо теперь совершенно точно установлено: на Марсе действующих вулканов нет. Были? Да — но несколько миллионов лет тому назад. А как же таинственные «сигналы», которые впоследствии фиксировались еще не раз? Их природа до сих пор остается неразгаданной… «Красная планета» надолго стала главным полигоном для «прокачивания» различных фантастических и утопических моделей космическо-планетарной эволюции и социального развития. В отличие от однородной венерианской тематики — марсианская изобилует контрастами и диаметрально противоположными гипотезами. Здесь обязательно так: или яблони цветут — или безжизненные пески, убившие все живое. Или лобастые и глазастые гуманоиды с зашкаленным коэффициентом интеллекта — или ужасающие монстры. Или загадочная Аэлита — возлюбленная романтика землянина, прибывшего на Марс, чтобы совершить социалистическую революцию, — либо полчища спрутоподобных убийц, методично наступающих на своих гигантских треногах, чтобы до последнего человека изничтожить население Земли. Или райская жизнь — или каторжная. Или расцвет цивилизации — или ее мучительная деградация. Сколько же было на эту тему научных и околонаучных эссе! Сколько научно-фантастических романов! Сколько лирических стихов!

Загадочно мерцая в окулярах, Плывет сквозь тьму космических глубин Оранжевый сосед земного шара, Фантазий и утопий властелин — Марс: миллионоверстным расстояньем Уменьшен, в детский мячик превращен, Плывет, мерцает гаснущим сияньем Закатных, нам неведомых времен.

–  –  –

С начала 1960-х годов наступила эра научно-технического беспилотного освоения Марса.

Один за другим к «красной планете» устремились автоматические межпланетные станции, начиненные измерительной и фотографической техникой. Снимки делались как на подлете и с высоты, так и непосредственно на поверхности после посадки модуля-автомата. В результате серии экспериментов не было обнаружено признаков какой-либо жизни вообще, не говоря уже о разумной.

Правда, точку на этом вопросе ставить пока рано. Во-первых, постоянно обнародуются выводы отдельных ученых, которые после обработки очередной серии данных утверждают, что есть основания интерпретировать некоторые факты, как следствие воздействия или деятельности низших организмов (например, бактерий). Во-вторых, совсем не риторическим является вопрос: что следует считать жизнью в космическом смысле данного понятия? Наконец, в-третьих, не стоит забывать об одном поучительном опыте, который произошел на советском космодроме еще при жизни С. П. Королева. Тогда полным ходом шла подготовка к запуску автоматической станции, которая должна была осуществить мягкую посадку на Марсе (позже эту программу законсервировали, а основное внимание было сосредоточено на космических полетах к Венере). Так вот, среди множества приборов, которые предполагалось доставить на Марс, был спектрорефлексометр, специально предназначенный для проверки наличия жизни на планете. Прибор прошел лабораторные испытания и считался готовым к отправке в космический рейс. Однажды С. П. Королев предложил еще раз испытать прибор, причем не в искусственных, а во что ни на есть реальных условиях. Он предложил вынести аппаратуру прямо в байконурскую степь, покрытую буйной травой и там произвести все необходимые манипуляции. Задание было выполнено, программа прокручена от начала до конца. В результате получен вывод: жизни в казахстанской степи (и следовательно, на Земле) нет.

И уж совсем открытым остается вопрос о былой заселенности Марса. Излюбленная тема фантастов — деградация и гибель марсианской цивилизации в далеком или недалеком прошлом — похоже, получила некоторое документальное подтверждение. Речь идет об обошедших весь мир фотоснимках (к сожалению, не слишком четких), которые с достаточной долей вероятности интерпретируются, как следы исчезнувшей марсианской цивилизации.

Самой сенсационной стала публикация фотографий сфинксообразных фигур. Размеры одной из них во много превосходят египетского сфинкса, охраняющего Великие пирамиды. Длина от подбородка до макушки — 1,5 км, ширина — 1,3 км, высота 0,5 км. Дальнейшая компьютерная обработка позволила обнаружить в семи километрах от загадочного сфинкса четыре малых и семь больших пирамид (рис. 87). Наиболее высокая из них, расположенная в центре, в 10 раз превосходит пирамиду Хеопса. Некоторые из энтузиастов даже настаивали, что между пирамидами просматриваются дороги и округлая площадь. Был даже объявлен их вероятный возраст — 9 тысяч лет. Факт обнаружения пирамид был подтвержден и в НАСА. Случилось это чуть ли не через два десятилетия после исторического рейса «Викингов». Все фотографии были сделаны еще в 1976 году, когда американские «Викинги» достигли «красной планеты» и передали на Землю необозримый массив информации — около 300 000 телеизображений.

Один из «Викингов» транслировал с орбиты, другой — прямо с поверхности (рис. 88). Так как финансирование марсианской программы было ограниченным, расшифровка полученных материалов затянулась на долгие годы: спустя 10 лет их было обработано всего лишь 20 %.

Поэтому-то и «сфинксы» попали в поле зрения ученых далеко не сразу.

Аргументы в пользу существования на Марсе высокоразвитой цивилизации выдвигались и с помощью его спутников — Фобоса и Деймоса, — очень необычных космических образований.

Не слишком большие, своей неправильной формой напоминающие картофелины, они очень быстро вращаются вокруг своей планеты по орбитам, ниже ожидаемых. Все это в совокупности дало основание советскому астрофизику И. С. Шкловскому выдвинуть в начале 1960-х годов нетривиальную гипотезу об искусственном происхождении марсианских лун. Направленные для их исследования автоматические межпланетные станции не достигли цели. Связь с ними прервалась (как это неоднократно уже случалось) при самом подлете, что дало повод для фантастических предположений: дескать, марсианские гуманоиды не хотят вступать в контакт с землянами и поэтому уничтожают автоматические станции.

И в самом деле, самая, пожалуй, потрясающая загадка марсианской истории последней четверти нынешнего века связана с историей его собственного освоения человеком. Такое впечатление, что сама «красная планета» всеми силами воспротивилась знакомству двух цивилизаций. Перипетии развернувшихся событий были настолько драматичными и невероятными, что это дало основание одному публицисту назвать Марс мистической планетой.

«Мистичность» нашего соседа по Солнечной квартире обусловлена фатальной чередой невезения при полетах автоматических летательных аппаратов, посланных с Земли на Марс в течение четверти века. Вплоть до последнего грандиозного провала самого впечатляющего по замыслу проекта, разработанного российскими учеными. Космическая станция, начиненная совершеннейшей аппаратурой, включая буровую установку и уникальные приборы для тестирования, погибла из-за неисправности двигателя ракетоносителя, не выйдя даже за пределы Земли. Установка стоимостью в сотни миллионов долларов утонула в южной части Тихого океана. Вместе с ней надолго утонул и престиж российской науки, которая не смогла стать достойной восприемницей традиций великого советского ученого С. П. Королева. Конечно, неудачи случались и раньше. Просто шквал неудач. И у нас, и американцев. С Луной получалось. С Меркурием и Венерой тоже. С Юпитером, Сатурном, их спутниками и другими более отдаленными планетами Солнечной системы — выполнение программ почти на 100 %. А вот с Марсом все по-другому. Провал за провалом — вопреки теории вероятностей.

Перелом наступил 4 июля 1997 года. В этот день на поверхность Марса опустился американский автоматический аппарат Mars Pathfinder («Марсианский следопыт») и вскоре начал передавать сверхчеткие снимки окружающего ландшафта — сначала черно-белые, затем цветные. На фотографиях — до боли знакомый марсианский пейзаж: красноватый песок, красноватое небо да хаотически разбросанные повсюду камни. Следующий этап — выход (точнее — выезд) на поверхность шестиколесного самодвижущегося робота — весом всего лишь 9 кг, снабженного телекамерой и научным оборудованием — рентгеновским спектрометром для определения химических характеристик грунта. Исторический момент встречи механического полпреда Земли с ее «красным собратом» транслировали все телекомпании мира. Любой телезритель, не выходя из дома, на мгновение почувствовал себя марсопроходцем. Все последующие события марсианской одиссеи были также доступны через систему «Интернет»

миллионам пользователей… И вот малышка-марсоход осторожно пробирается по дну марсианского канала, высохшего, как полагают, сотни миллионов лет тому назад. (Называлась цифра до одного миллиарда лет и более. И уж точно было определено, что в далеком прошлом марсианский «канал» достигал в ширину сотен (!) километров и ежесекундно пропускал через себя около миллиона кубометров жидкости, о химическом составе которой приходится только гадать.) Именно сюда на крыльях воображения устремлялось не одно поколение марсианских мечтателей. И вот автоматический посланец с помощью оптических приборов медленно осматривает безжизненную поверхность.

Никаких марсиан! Никаких признаков жизни! Никаких намеков на былые деяния разумных существ! Впрочем, не слишком далеко суждено было шестиколесной крохе прокладывать ему марсианскую борозду. В первые двое суток неустанной работы он продвинулся всего лишь на один (!) метр, тщательно исследуя структуру и химический состав близлежащих камней (как и ожидалось, они мало чем отличаются от земных). Да и не слишком долго продержался металлопластиковый марсианский исследователь на ходу в условиях 87-градусного мороза. Но сделал исключительно много. Для будущего!

Итак, планомерное наступление на загадочную планету продолжается. Во-первых, и далее будут запускаться автоматические межпланетные станции с целью не только совершить мягкую посадку на Марсе, но и попытаться доставить обратно на Землю образцы минералов и проб, взятых на поверхности и неглубоко в ее недрах. Во-вторых, определена в принципе и дата полета на Марс космического корабля с людьми на борту (возможно, это будет совместный полет российско-американского экипажа). Ученые называют в качестве наиболее оптимального 2008 год, когда Земля вновь сблизится со своим космическим братом. В американском Космическом центре имени Джонсона планируют, начиная с 2007 года, запустить к Марсу двенадцать экспедиций, рассчитывая уже в 2016 году основать на «красной планете» обитаемую колонию землян. Сначала будет три грузовых пуска. Затем в 2009 году на околомарсианскую орбиту доставят запасной «возвратный» корабль и запасную взлетную ступень для эвакуации астронавтов. В случае успеха всей предварительной подготовки на Марс отправится экипаж из шести человек и останется там больше года — до 20 месяцев. В 2012 году его сменит вторая экспедиция. Так начнется реальное заселение околоземного пространства.

Наибольшие трудности в настоящий момент составляет проблема не доставки астронавтов на «красную планету», а возвращения их домой на Землю. Запасы топлива для обратного рейса придется брать с собой, что чрезвычайно усложняет осуществление самого полета. Ускоренно прорабатываются и альтернативные варианты. В частности, внимание ученых все больше привлекает возможность использовать для обратного рейса «подручные средства». Известно, что атмосфера Марса на 95 % состоит из двуокиси углерода. Для того, чтобы с помощью несложной технологии получить из этой «отравы» подходящее горючее, земным космонавтам достаточно доставить с собой только водород (или получить его каким-то другим приемлемым способом). С его помощью можно уже будет произвести из двуокиси углерода достаточное количество жидкого кислорода и метана для обеспечения обратного рейса. Существуют и другие предложения, содержащие обоснование того, как изготавливать топливо «на месте». Но все это пока предварительные расчеты. Скорее всего, за 10 лет, оставшиеся до марсианской одиссеи, жизнь внесет новые коррективы, и проблемы, в наибольшей степени занимающие сегодня тех, кто работает над реализацией марсианских программ, будут благополучно преодолены.

Между тем разрабатываются вполне респектабельные проекты дальнейшего освоения и даже колонизации Марса. В Америке вот уже 15 лет разработкой таких программ занимается «Марс Андеграунд», неформальный клуб ученых и инженеров. Его глава — известный специалист Роберт Зубрин — считает, что Марс может быть заселен в сроки, сопоставимые с британской колонизацией Северной Америки в XVII веке. И как европейские колонисты не везли в Америку бревна, доски и гвозди, так и будущие марсианские первопроходцы вовсе не станут завозить с Земли строительные материалы. Они все должны делать из подручных материалов. Для этого на Марсе имеется масса возможностей. С помощью микроволновых установок «новые марсиане» смогут растопить вечную мерзлоту и добыть воду. Марсианская пыль глиноземного происхождения: из нее получатся отличные кирпичи. Знаменитый красный песок — отличная основа для строительного раствора, а гипс — для штукатурки. Не нужно слишком большого воображения, чтобы представить марсианские города, возведенные трудолюбивыми землянами.

Роберт Зубрин идет еще дальше. По существу, он разработал настоящую «марсианскую философию». В качестве аналогии и даже первоосновы он взял историю открытия и освоения Америки. Ученый-футуролог считает, что Марс будут осваивать такие же целеустремленные люди, которые некогда открыли и колонизировали Новый Свет. Колумб — вот идеальный образец первооткрывателя.

Он был одержим Великой Целью и именно поэтому победил. Не было бы такой цели — не было бы никакого открытия. И такая же великая (по значению!) цель стояла практически перед каждым, кто отправлялся за океан в поисках новой счастливой жизни.

Соединение всех этих индивидуальных целей в одну общую и привели, по Зубрину, к известному всем результату:

возникла процветающая американская цивилизация. Данную схему необходимо реализовать и при освоении Марса.

Будущее марсианской цивилизации решающим образом будет зависеть от прогресса науки и технологии. Движущей силой прогресса человечества в прошлом столетии была американская изобретательность. (На самом деле прогресс мировой цивилизации не в меньшей степени зависел от русской и европейской «изобретательности»). Аналогичным образом «марсианская изобретательность», где более всего будут цениться образование, ум и умение работать за пределами возможного, существенно поможет движению человечества в грядущем веке. Прежде всего прорыв необходим в области производства энергии. На «красной планете» есть один главный источник энергии, о котором нам известно, — дейтерий. Его можно использовать в качестве горючего в почти безотходных термоядерных реакторах деления. На Земле тоже немало дейтерия, но нет необходимости развивать этот метод при наличии других. Марсианским же колонистам без него не обойтись, и, развивая это направление, они окажут неоценимую услугу Земле.

Аналогия между Марсом и Америкой XIX века, по Зубрину, пока еще недооценивается, особенно в плане двигателя технологического прогресса. Западные границы Америки в прошлом веке требовали много людей, постоянно наблюдалась нехватка рабочей силы и приходилось экстренно развивать механизацию труда, повышать образование персонала, доводить до максимума производительность. Теперь этого нет и в помине. Иммигранты давно уже не являются желанными гостями в Америке, а для поглощения энергии населения созданы огромная сфера обслуживания и бюрократическая машина. Большинство людей попросту отстранены от созидательного труда. Двадцать первый век лишь усилит все эти проблемы. А на Марсе в XXI веке ничто не будет цениться так дорого, как рабочая сила. Естественно, там будут лучше платить за труд, чем на Земле. Точно так же, как Америка в XIX веке сменила европейское отношение к человеку, марсианские социальные нормы будут неизбежно воздействовать на земные. Для марсианской цивилизации будут установлены более высокие стандарты и нормы отношений, и со временем они неизбежно будут перенесены и на Землю.

В Америке прошлого века были созданы основы для развития демократии и возникновения самоуправления. Так же, как в прошлом веке американцы показали Европе путь, — продолжает рассуждать Зубрин, — в веке будущем «марсиане» должны спасти нас от засилья олигархий.

Есть и еще одна угроза свободному развитию человечества — это распространение разного рода антигуманных идеологий и возникновение политических институтов, на них опирающихся.

Один из примеров таких теорий — теория Мальтуса о перенаселенности Земли. Суть ее в том, что земные ресурсы ограничены и надо ограничивать рост населения, чтобы не прийти к катастрофе. Мальтузианство давно уже показало свою полную несостоятельность — все его предсказания оказались неверными. Ведь люди не только потребляют ресурсы, они и создают их при помощи новых прогрессивных технологий. Возрастает не только население Земли, но и уровень его жизни, в полном противоречии с Мальтусом. Однако споры с идеями Мальтуса должны идти на страницах академических журналов. Люди же должны просто видеть перед собой огромные неиспользованные поля и моря ресурсов. Когда все ограничено, люди волейневолей становятся врагами друг другу. Только в мире неограниченных ресурсов все люди могут стать братьями.

Западные цивилизации родились в момент экспансии, развивались в ней, и для их нормального бытия просто необходима экспансия. Некоторые формы общества могут существовать в замкнутом мире — те, кому не нужны и не важны свободы, творчество, индивидуальность, прогресс и другие виды человеческой деятельности, отличающие нас от животных. Там нет места правам человека, да и просто человеческой жизни как таковой. Не надо забывать, что свободные общества — исключение в истории человечества. Они существовали лишь четыре века, когда «граница» двигалась на запад. Открыл ее Христофор Колумб.

Теперь она закрыта, эпоха экспансии закончилась. Если мы не хотим, чтобы о прошедших годах историки будущего вспоминали как о счастливом, но кратком «золотом веке» среди нескончаемой череды человеческих страданий, надо открыть новую границу. Марс зовет. При этом Марс — это всего одна планета. И если его освоение пойдет успешно, он не сможет занимать внимание человечества более трех-четырех веков. Если мы откроем границу на Марсе, человечество получит возможность экспоненциального роста, и освоение Марса станет попросту спасением цивилизации. Космос огромен. Ресурсы его поистине беспредельны. За четыре века наука и технология продвинулись настолько далеко, что достигнутое в двадцатом веке во много раз превосходит самые смелые ожидания века девятнадцатого, и показалось бы просто сном восемнадцатому веку и волшебством — семнадцатому.

Попробуйте теперь представить, чего человечество сможет достигнуть в следующие четыре века свободы?

Марс неизбежно приведет к созданию новых, более мощных источников энергии, более быстрых видов транспорта, а после этого человечеству откроются пути к границам Солнечной системы, а потом — к звездам. Главное — не останавливаться. Если прекратить развитие, общество кристаллизуется в статической форме. Это именно то, что с нами сейчас происходит.

«Граница» закрыта, налицо первые признаки кристаллизации общества.

Прогресс пока лишь замедлился, он не остановился, люди еще верят в него, наши правящие институты пока не вошли с ним в противоречие. Мы пока еще не лишились главного завоевания четырехсотлетнего Возрождения человечества: думать, принимать решения, открывать новые границы. Марс ждет нас, его пионерам понадобятся новые технологии, наука, творчество, свободная мысль свободных людей. Марс ждет нас, но он не будет ждать вечно.

Такова вкратце «марсианская футурология» Роберта Зубрина. В интервью редакции российского журнала «Знание — сила» он уточнил свою позицию.

Почему вы думаете, что будущая Цель человечества находится не на Земле, а за ее пределами?

По двум причинам. Прежде всего, чтобы стимулировать развитие технологий и социальных институтов. Цель должна быть за пределами современных способов и методов существования.

Наша планета слишком обжита, чтобы бросить человечеству достойный вызов. И второе. Чтобы дать новой цивилизации необходимую для развития свободу. Цель должна дистанцироваться от существующих правящих институтов и норм, избавиться от их опеки и влияния. Огрубляя, можно сказать так: при современных средствах транспорта и связи в любом месте Земли вы чувствуете, как полицейский дышит вам в ухо.

Почему вы думаете, что именно США должны стать пионерами освоения Марса?

Различные страны, Россия, к примеру, имеют богатые традиции освоения «белых пятен» Земли.

У американцев есть большие традиции в достижении Целей. Причем не только как освоения новых территорий, но и как «лабораторий», где вырабатывались новые формы цивилизации. Мы должны продолжить эти традиции, если хотим остаться Американцами. Все жители Земли должны присоединиться к нам, если они хотят стать родителями новой и динамичной ветви земной цивилизации. Лишь те, кто отважится на это, будут создавать будущее.

Не кажется ли вам, что поставленные цели человечеству будет нелегко достичь? Истинные Цели обычно возникают в процессе движения, а не в результате научных изысканий.

Истинная цель путешествия на Марс — открыть новую планету для человечества. Конечно, научные исследования ценны и интересны и стимулируют современные исследования Марса. Но так же как цель Колумба (найти новые источники благовоний для Испании) бледнеет по сравнению с тем, чего он достиг (открыл Новый Свет для европейских переселенцев), можно ожидать, что научная «выгода» от освоения Марса будет абсолютно несущественна по сравнению с главным результатом — превращением человечества в космическую цивилизацию.

Не слишком ли велика цена, которую человечество заплатит за отказ от тихой и сытой жизни?

Цивилизации, которые отказываются от Цели и остаются «дома», останавливаются в своем развитии и гибнут. Китайские императоры династии Мин ставили перед собой задачу глобального исследования Земли в начале пятнадцатого века, посылая экспедиции даже на Мадагаскар. Но императорские евнухи убедили своего господина, что информация из новых земель может лишь дестабилизировать положение внутри самого Китая, и экспедиции прекратились. Флот был сожжен, и вместо открытия Европы китайскими мореплавателями в начале пятнадцатого века европейцы открыли Китай веком позже. Вот цена за отказ от Цели. За отвагу и смелость всегда приходится расплачиваться и человеку, и всей цивилизации, но плата за трусость оказывается гораздо большей.

ЮПИТЕР Царь планет (иногда его даже называют несостоявшейся звездой) Юпитер недаром назван в честь верховного Божества античного пантеона. Красавец звездно-планетного мира, одним видом своим вызывающий восхищение и трепет, он был главной божественной звездой в Древнем Вавилоне и сопредельных странах, олицетворяя владыку месопотамских Богов — Мардука. «Утром, когда звезды северной части неба исчезают, великий Юпитер [звезда Мардука] неподвижно стоит в середине неба и еще слабо виден», — прочитали ученые на одной из глиняных табличек. Под именем звезды Мардука он был известен также в Древней Элладе.

Впоследствии эллины сохранили за ним царское имя — звезда Зевса, его переняли и римляне. Между прочим, у персов Юпитер также считался царской звездой, но только уже под именем верховного зороастрийского Божества — Ахуры-Мазды.

Когда на Юпитер впервые направили трубу телескопа, то царственный багрово-пятнистый лик планеты, невольно приводящий к почтению, сразу же открылся во всей красе. И еще одна особенность «владыки планет» — его приплюснутость на полюсах, отчего диск при наблюдении представляется сдавленным. Как впоследствии подсчитали дотошные астрономы, полярный диаметр планеты на 7 % меньше экваториального. Причина такого необычного в планетном мире явления — быстрое вращение Юпитера вокруг своей оси: один оборот гиганта длится всего 10 земных часов.

Причем продолжительность суток увеличивается по мере продвижения от экватора к полюсам, что может быть обусловлено только тем, что гигант Солнечной системы — не твердая, а жидкая планета. Жидкость эта — газы, сжиженные под воздействием умопомрачительного холода.

Фотографические снимки, сделанные с близкого расстояния автоматическими межпланетными станциями, лишний раз подтвердили грандиозность и неповторимость красоты природы. Размеры Юпитера только усиливают впечатление наблюдателя: его масса в 300 раз превышает земную, а объем — даже в 1000 раз. Масса Юпитера ко всему прочему превышает суммарную массу всех остальных планет Солнечной системы. Считается, что в центре жидкой планеты-гиганта все же находится небольшое твердое ядро.

Мощная, густая, как сметана, и ядовитая атмосфера вздымается над планетой на тысячи километров, пребывая в непрестанном движении, вихрях и водоворотах. В эпицентре этого космического урагана медленно перемещается таинственное Большое красное пятно — визитная карточка планеты, — своими размерами превосходящее нашу Землю.

О его происхождении долгое время шли горячие споры. Сначала полагали, что Пятно — результат мощнейшей вулканической деятельности на планете, а специфический оттенок вызван докрасна раскаленной лавой. Затем бросились в другую крайность и стали утверждать, что Пятно — чудовищный низкотемпературный айсберг, образованный замерзшим гелием, который плавает в атмосфере Юпитера, как земные ледяные горы в Тихом или Атлантическом океане.

Следующая гипотеза — гидродинамическая: Красное пятно вихревого происхождения и образовано гигантской стоячей волной над какой-нибудь впадиной или возвышенностью.

Наконец возобладала, если так можно выразиться, метеорологическая гипотеза: Красное пятно — это колоссальных масштабов, силы и энергии ураган-циклон, постоянно свирепствующий на планете. Правда, если сравнивать с земными тайфунами, они должны постепенно менять, а по прошествии определенного срока и вовсе терять свою силу и энергию.

Чего не скажешь о юпитерианском Пятне: хотя оно и меняет свою яркость, но все же остается относительно стабильным движущимся феноменом.

Информация о «красном пятне» Юпитера, полученная в 1996 году с борта американской автоматической межпланетной станции «Галилео», внесла существенные поправки в бытовавшие до того в ученой среде умозрительные представления. В области «красного пятна» с поперечником, превосходящим диаметр Земли, обнаружили на высоте 50 км над обычными облаками еще и грозовые тучи протяженностью до 100 км. Физические и метеорологические параметры обнаруженных туч практически полностью совпадают с аналогичными характеристиками земных тайфунов, с той разницей, что на Юпитере они несутся с бешеной скоростью — около 300 км/час.

Все это никогда не мешало рассуждениям на тему возможных форм жизни на Юпитере.

Данный вопрос дискутировался постоянно, азартно и не без уморительных нонсенсов, связанных с именами великих ученых. Когда Галилей открыл первые четыре спутника Юпитера (в настоящее время их известно четырнадцать), другой крупнейший строитель науки Нового времени — Гюйгенс, автор волновой теории света — немедленно задал вопрос: а что из этого следует (Гюйгенсу, кстати, принадлежит честь открытия и Красного пятна на Юпитере). Далее следовал классический образчик умозрительного рассуждения, опирающегося исключительно на игру воображения. Спутники Юпитера — это его луны. Луна — спутник Земли — первопричина океанических приливов и отливов. Четыре луны Юпитера (если бы Гюйгенс только знал, что их 14!) вызывают вчетверо более сильные приливы и отливы.

Следовательно, на юпитерианских океанах — ох, как не спокойно!

Матросы там не сидят без дела. Они в постоянной борьбе со стихией. Ветры на Юпитере, должно быть, тоже вчетверо крепче земных. Они вчетверо сильней и вчетверо быстрей треплют паруса и рвут веревки на юпитерианских кораблях. Проблема с пенькой на Юпитере вчетверо актуальней, чем на Земле. Вот таким способом доказывалось существование жизни на Юпитере в ХVII веке. Вопреки всем канонам Аристотелевой логики, но, согласитесь, есть в этом нечто захватывающее и романтичное!

В наше время возможность жизни на Юпитере не отрицается полностью. Безусловно, там могут существовать лишь совершенно иные в сравнении с земными формы жизни и, скорее всего, простейшие. Впрочем, изобретательность природы не знает границ. Человеческому воображению (безразлично, научному или поэтическому) все равно за ней не угнаться. В настоящее время в большей степени допускается вероятность наличия каких-то жизненных форм на спутниках Юпитера. Так, совсем недавно, весной 1997 года, были получены высококачественные снимки одной из 14 юпитерианских лун — Европы. Американский космический аппарат «Галилео» пролетел на расстоянии всего лишь каких-то 692 км от ее поверхности и передал на Землю сенсационную информацию: Европа закована в мощный ледяной панцирь, пробитый ровными линиями горных хребтов. Лед — значит, вода. Вода — значит, жизнь. Или по крайней мере значительная доля вероятности таковой. Даже под километровой коркой льда вода может сохраняться в жидком состоянии, наподобие как подо льдами Северного полюса Земли (с поправкой на толщину). Правда, на Европе не дать воде промерзнуть до основания помогает собственное раскаленное ядро юпитерианского спутника (на Земле же, помимо собственных геотермальных процессов, существенную роль играет энергия, поступающая от Солнца).

Лунное семейство царя планет — Юпитера — столь же уникально, как и сам «хозяин».

Здесь — целый космический зоопарк «невиданных зверей»; среди них два самых больших спутника в Солнечной системе — Ганимед и Каллисто. Поверхность первого покрыта частыми «морщинами» горных хребтов и кратерами.

Недавно здесь были обнаружены русла естественных каналов. В сочетании с мощными пластами льда, которым покрыта поверхность Ганимеда, они наводят на смелые предположения. Еще более поразительную картину дает Каллисто — спутник сплошь покрыт «оспинами» больших и малых кратеров — следами мощнейших метеоритных атак. Последний, 14-й спутник Юпитера, был открыт совсем недавно, в 1979 году, во время транспланетного полета американского автоматического космического корабля «Вояджер-1». А спустя три года на ХVIII Генеральной ассамблее Международного астрономического союза этому небесному телу было присвоено название Адрастеи (в честь эллинской Богини судьбы и возмездия — коррелята Дике и Немесиды).

САТУРН И ОСТАЛЬНЫЕ ПЛАНЕТЫ

В середине ХVIII века на планету Сатурн из системы звезды Сириуса прибыл инопланетянин со странным именем Микромегас. Больше всего космического пришельца поразил рост сатурнийцев, которые показались ему совсем крошечными — ростом всего лишь около 2 км. Сам Микромегас был в 12 раз выше — в вышину 24 тысячи шагов, то есть около 24 км. Так начинается одна из знаменитых «философских повестей» Вольтера. Сам «фернейский мудрец», как его прозвали современники, в духе Века Просвещения свято верил в населенность (быть может, даже перенаселенность) бесконечного Космоса. И уж, конечно, рост жителей Сатурна прикинул верно: на такой большой планете население должно быть рослым.

Планета Сатурн известна испокон веков. Видимая невооруженным глазом, она по-разному называлась у разных народов. Эллины прозвали ее в честь верховного Божества доолимпийского пантеона Крона. При нем, главном из титанов, на Земле царил «золотой век». Но Зевс вместе с Олимпийцами сверг собственного отца. Разрушил строй мира справедливости и благоденствия, установил порядок «войны всех против всех». Народ же продолжал чтить Крона. В Древнем Риме он именовался Сатурном. В его честь в самом центре Вечного города был воздвигнут один из главных и наиболее почитаемых храмов, где хранилась государственная казна.

Когда Галилей впервые направил телескоп в сторону Сатурна, он был несказанно поражен:

на месте самой дальней из известных в то время планет он увидел не одну, а целых три. Загадка была раскрыта спустя почти полвека Гюйгенсом, который наблюдал «звезду Крона» в более мощный телескоп. Оказалось: то, что Галилей принял за три «куска» планеты, на самом деле является невиданным доселе гигантским кольцом, расположенным под небольшим углом к плоскости орбиты. Его наклон по отношению к земному наблюдателю медленно меняется.

Иногда Сатурн становится похожим на силуэт человеческой головы с надетой шляпой, но иногда кольца (вскоре обнаружили, что их три) исчезают вовсе из-за разности времени обращения планет вокруг Солнца и изменения наклона оси вращения (рис. 89).

Кольца Сатурна долгое время считались чем-то экзотическим, из ряда вон выходящим, пока американские автоматические зонды не освоили дальние заповедные уголки Солнечной системы. Фотографии, переданные на Землю, показали: кольца, правда, не столь роскошные, как у Сатурна, есть еще у трех планет. Сначала они были открыты у Урана, затем (очень узкое и пылеобразное) — у Юпитера и, наконец, — у Нептуна. Зато кольца самого Сатурна при исследовании их с помощью автоматических аппаратов тоже преподнесли немало новых сюрпризов. Оказалось, что их не три, как считалось первоначально (затем их количество увеличили до шести-семи), а значительно больше. На фотоснимках, полученных в начале 1980-х годов с помощью американских космических аппаратов «Вояджер-1» и «Вояджер-2», все кольца планеты распадаются на сотни концентрических окружностей (по разным подсчетам их от 500 до 1000). И каждое состоит из бессчетного множества мелких частиц — либо кусочков льда, либо обледенелых камешков (ученые пока не пришли к единому мнению).

Ребра колец Сатурна — величиной с 6–8-этажный дом (сквозь них проходит солнечный свет). Зато ширина достигает 400 000 км. Наиболее вероятное объяснение происхождения колец — разрушенный спутник, который слишком близко приблизился к поверхности планеты.

Считается, что подобное может произойти и с нашей Луной, если она по какой-то причине чересчур приблизится к поверхности Земли: тогда в Солнечной системе появится еще одна планета с кольцами. Фотографии, сделанные на сравнительно небольшом расстоянии, принесли еще немало сенсаций. Например, на кольцах Сатурна были обнаружены «спицы», непонятные образования, которые, подобно спицам велосипедного колеса, пересекают кольца на расстояния до нескольких тысяч километров. На кольцах были зафиксированы не поддающиеся пока объяснению с позиций небесной механики переплетения отдельных структурных «нитей», вздутия на них и другие феномены.

Сатурн — чемпион и по другим показателям. На нем дуют самые сильные ветры — сильнее, чем на Юпитере: до 1800 км/час, что раз в 20 превышает силу самого свирепого тайфуна на Земле.

О постоянной активизации атмосферы Сатурна свидетельствует огромное белое пятно, которое регулярно, с периодичностью примерно в 30 земных лет появляется перед глазами наблюдателей. Перемещаясь с колоссальной скоростью, пятно растет, вытягивается, его размеры во время последней активизации в 1990 году достигли четверти видимой стороны планеты.

На Сатурне не случайно есть где разгуляться ветрам: он почти целиком состоит из газов — смеси метана, водорода и гелия. Кусочек «землицы» с Сатурна, если бы таковой удалось заполучить и доставить на Землю, плавал бы в ведре с водой, как щепка. В густой и неприветливой атмосфере кольценосной планеты носятся аммиачные облака. Так что вольтеровскому Микромегасу пришлось бы здесь туговат. Земной обыватель тоже почувствовал себя здесь более чем неуютно. Но это ведь с земной точки зрения. Не будем мерить Вселенную субъективными мерками!

Сатурн установил рекорд еще в одной области — по количеству спутников. Первоначально их насчитывалось 10. Но в начале 1980-х годов космические аппараты «Вояджер-1» и «Вояджерсфотографировали 4 новых спутника, невидимые с Земли. А в октябре 1995 года с помощью выведенного на орбиту Космического телескопа «Хаббл» были открыты еще 4. Итого — 18, на 4 больше, чем у Юпитера. Конечно, каждый спутник, как и любая планета, по своему уникален.

Однако внимание исследователей в наибольшей степени привлекает сатурнианский Титан — самая большая из лун Солнечной системы. Размерами он превосходит Меркурий. Кроме того, на Титане обнаружена разряженная атмосфера и ледяной панцирь. Относительно льда высказывают предположение, что это — замерзший метан.

Некоторые, однако, не исключают наличия воды. В таком случае поверхность Титана — нечто похожее на земную Арктику или Антарктику.



Pages:     | 1 |   ...   | 2 | 3 || 5 | 6 |   ...   | 7 |
Похожие работы:

«УДК Событийные интерактивные мероприятия как средство формирования интереса к истории и культурным особенностям родного края Т.И. Лыбина Муниципальное общеобразовательное бюджетное учреждения Тюкалинского муниципального района Омско...»

«Приложение №1 к Акту по результатам государственной историко-культурной экспертизы, проведенной с целью уточнения сведений об объекте культурного наследия федерального значения "Новосибирский театр оперы и балета" по адресу: Новосибирская обл., г. Новосибирск, Красный пр., д.36, включенном в единый го...»

«Анатолий Петрович Левандовский Потомок Микеланджело Ершов В. Г. "Потомок Микеланджело": Издательство политической литературы; Москва; 1991 ISBN 5-250-01182-9 Аннотация Повесть "Потомок Микеланджело" посвящена драматичным страницам истории Франции — борьбе тайных революционных организаций против диктатуры Наполеона Бонапарта. Це...»

«Экономические и гуманитарные науки ББК Т3(2) РАБСЕЛЬКОРОВСКОЕ ДВИЖЕНИЕ: НЕИЗВЕСТНАЯ ГРАНЬ А. А. Слезин Кафедра истории и философии, ТГТУ Представлена членом редколлегии профессором В.И. Коноваловым Ключевые слова и фразы: анонимка; донос; критика; псевдоним; рабселькор; стенгазета. Аннотация: Раскрываются функции движения ра...»

«Лобыгин Алексей Николаевич Преодоление коммуникативных затруднений старших подростков на основе системы полифункциональных дидактических игр Специальность 13.00.01 – общая педагогика, история педагогики и образования Диссертация на соискание учёной степ...»

«Министерство культуры Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования "Московский государственный институт культуры" Социально-гуманитарный факультет Кафедра истории, истории культуры и музеев...»

«МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное бюджетное образовательное учреждение высшего образования "Алтайский государственный педагогический университет" (ФГБОУ ВО "АлтГПУ") Этнологи...»

«Вестник ПСТГУ Корина Наталия Дмитриевна, Серия V. Вопросы истории соискатель кафедры всеобщей истории искусства РГГУ, и теории христианского искусства мл. науч. сотр. Государственного историкоВып. 1 (17). С. 145–156 культурного музея-заповедника "Моско...»

«Юшковский Виктор Данилович Г.С. БАТЕНЬКОВ: ЭВОЛЮЦИЯ ЛИЧНОСТИ И МИРОВОЗЗРЕНИЯ В ИСТОРИЧЕСКОМ КОНТЕКСТЕ РОССИИ ПЕРВОЙ ПОЛОВИНЫ XIX ВЕКА 07.00.02 – Отечественная история Автореферат диссертации на соискание ученой степени кандидата историче...»

«ДОСТОПРИМЕЧАЕЛЬНОСТИ ПОСЕЛКА ДАРОВСКОЙ В настоящее время принято считать датой основания любого населенного пункта первое летописное или другое упоминание в исторических документах. Таковым является храмозданная Грамота Архиепископа Дионисия "на построение в Котельническом уезде, в Торощиной слободке вновь деревянной церкви во имя Св...»

«МОДУЛЬНЫЙ ПОТЕНЦИОСТАТ/ГАЛЬВАНОСТАТ EC-lab produCts SP-300 ехнологический прорыв в новом поколении супер-потенциост тов. озобновляемые источники энергии унд мент льн я эл...»

«Турклуб "Время не ждет" Отчет о комбинированном пешеходно-водном туристском спортивном походе IV категории сложности по Кольскому п-ов совершенном с 07.08.2009 по 25.08.2009 г. Маршрутная книжка № 40/09 Руководители группы: Рудев И.Н., Семеник В.И. Адрес руководителя: Киев, б-р. Дружбы народов, 21, кв. 85, тел 067-233-58-84 Мар...»

«11 Vox redactoris An important part of the Reviews section (the ‘D i a l o g u s’ part) is taken up by discussion of the new book by Aleksey Antoshin, The Gold of Sennar, dedicated to those craftsmen from the Urals who founded and organized local gold mining in Egypt. A unique historical document, discovered by the author of the monog...»

«ЭТНОЛОГИЯ БЕЛЫЙ КАМЕНЬ Юрий Петрович Лыхин, кандидат исторических наук, ученый секретарь Архитектурно-этнографического музея "Тальцы", г. Иркутск Местонахождением этого табуированного культового объекта является Торская котловина — часть Тункинской долины, простирающейся на 200 километров между отрогами Восточного Саяна к юго-западу от южной о...»

«A T tillVERSItlTlSS E E 1 N I D Д T Д J ZE ШШПЖ CA Z C DE SS E T ) S F L D I S S E R TAT IО N E S SLAVICAE SLAVISTISCHE M I T T E I L U N G E N Ч МАТЕРИАЛЫ И СООБЩЕНИЯ ПО СЛАВЯНОВЕДЕНИЮ V. SZEGED I Publicationes Instituti Philologiae Rossicae in Universitate de Attila Jzsef Nominata V. Redigit Jzsef Juhsz К ИСТОРИИ РАЗРАБОТКИ РУССКОГО ЯЗЫКА В СОВЕТСКИЙ ПЕРИОД И ПЕРСПЕКТИВЫ ДАЛЬ...»

«Серия История. Политология. Экономика. Информатика. 192 НАУЧНЫЕ ВЕДОМОСТИ 2014 № 1 (172). Выпуск 29 УДК [321. 01:323. 11(470+571) КОНЦЕПЦИЯ ГЕОПОЛИТИЧЕСКОГО И НАЦИОНАЛЬНО-КУЛЬТУРНОГО РАЗВИТИЯ РОССИИ-ЕВРАЗИИ В работе раскрывается сущность евра...»

«Annotation В книге рассматриваются темы власти и секса, красоты и искусства, обсуждаются вопросы национальных предрассудков, вырождения этносов и культур. Особое внимание уделяется российской цивилизации. Автор – доктор наук, нейробиолог, антрополог...»

«Еженедельный e-mail журнал "Ваши правила игры" Выпуск #16, 01 мая 2015 год Правила игры Москва, 2015 Оглавление Семейные истории, ценности и детские книги Истории, которые продают вас и вашу компанию, реальны! Сторителлинг в деталях Корпоративное воспитание через...»

«МИН ОБРНАУКИ РОССИИ Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский университет "Московский институт электронной техники" "УТВЕРЖ...»

«Удмуртское l2DQ2n2 ‘читать’, goXt2n2 ‘писать’. 1 Денис Сахарных Удмуртское l2DQ2n2 ‘читать’, goXt2n2 ‘писать’: историко-этимологический очерк Электронная версия доклада v.1.1 Издано: Сахарных Д.М. Удмуртское l2DQ2n2 ‘читать’, goXt2n2 ‘писать’: историко-этимологический очерк // Сравнительно-историческое и типологическое из...»

«ГЕНОФОНД БЕЛОРУСОВ ПО ДАННЫМ О ТРЕХ ТИПАХ ГЕНЕТИЧЕСКИХ МАРКЕРОВ – АУТОСОМНЫХ, МИТОХОНДРИАЛЬНЫХ, Y ХРОМОСОМЫ Балановский О.П.1, Тегако О.В.2 1Государственное учреждение Медико-генетический научный центр РАМН, Москва (Россия) 2Инс...»

«Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Санкт-Петербургский государственный университет технологии и дизайна" Киевский на...»

«Козлова Елена Геннадьевна ФОРМИРОВАНИЕ ПРОФЕССИОНАЛЬНОЙ ИДЕНТИЧНОСТИ ЛИЧНОСТИ В СОВРЕМЕННОЙ КУЛЬТУРЕ Специальность 24.00.01 – теория и история культуры Диссертация на соискание ученой степени кандидата культурологии Научный руководитель: доктор философских наук, доцент Морина Л. П. Санкт-Петербург О...»

«ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ "БЕЛГОРОДСКИЙ ГОСУДАРСТВЕННЫЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ" (НИУ "БелГУ) УТВЕРЖДАЮ И.о. декана факультета журналистики Ушакова С.В. 15.06.2016 РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ История региональной журналистики наименов...»

«МУК Кондинская МЦБС СБОРНИК Междуреченский 2014год ББК 84 (2Рос=6Хан=2Кон) В 61 Война в памяти односельчан [Текст]: сборник материалов конкурса литературно-художественного творчества читателей "Творческие родники Конды" / сост. Н. В. Бархатова. – Междуреченский: ЦБ МО, 2014. – 78...»

«ВОПРОСЫ ЯЗЫКОЗНАНИЯ №1 1989 ТАРЛА.НОВ 3. К. О ЛЕКСИКО-СИНТАКСИЧЕСКОМ ИЗОМОРФИЗМЕ В ИСТОРИИ ЯЗЫКА Одна из главных задач, выдвигаемых и обсуждаемых в языкознании,— это, как известно, введение в научный обиход, систематизация и историко-теоретическое осмысление материалов различных языков в их движении или синхрон...»

«Записки генерала В. И. Левенштерна IV. ИСТОРИЧЕСКАЯ АНТОЛОГИЯ ЗАПИСКИ ГЕНЕРАЛА В. И. ЛЕВЕНШТЕРНА Ценнейшую информацию о внутренней жизни армии Наполеона, об организации работы наполеоновского штаба, о самой личности французского императора да...»

«Сергей Михайлович Соловьев История России с древнейших времен. Книга XII. 1749–1761 История России с древнейших времен – 12 Аннотация В двенадцатую книгу сочинений С.М. Соловьева включены двадцать третий и двадцать четвертый тома "Истории России с древнейших времен", освещающие события последних тринадцати лет царствования...»








 
2017 www.kniga.lib-i.ru - «Бесплатная электронная библиотека - онлайн материалы»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.