WWW.KNIGA.LIB-I.RU
БЕСПЛАТНАЯ  ИНТЕРНЕТ  БИБЛИОТЕКА - Онлайн материалы
 

Pages:     | 1 |   ...   | 4 | 5 || 7 |

«Annotation В книге на основе новейших научных данных воссоздается картина мироздания в ее развитии — от первых мифопоэтических представлений до современной космологической панорамы. Автор обращается ...»

-- [ Страница 6 ] --

Вселенная поддерживается в определенном динамическом равновесии с помощью сил тяготения небесных тел и сил инерции их масс без учета материальности космической среды. Конечно, математическая модель даже такой Вселенной чрезвычайно сложная, но принципиально ее можно описать и даже промоделировать с помощью современных ЭВМ. Однако реальная структура космического пространства создает некоторый эффект торможения движению небесных тел. Небесная механика позволяет исследовать и этот эффект, однако она не дает ответа на вопрос — почему же Вселенная преодолевает торможение движения небесных тел и откуда она находит энергетические ресурсы для восстановления расходуемой энергии? Чтобы выявить подобные энергетические ресурсы, необходимо более детально рассмотреть особенности гравитационного взаимодействия между небесными телами.

Распределенная масса небесных тел приводит к существенному изменению гравитационных взаимодействий между телами. Поскольку каждая материальная частица небесного тела является источником гравитационного поля, результирующее (или суммарное) поле жестко связано с телом и участвует в его вращении вокруг центра масс как одно целое. Это означает, что гравитационное поле не только охватывает значительное пространство вокруг тела, но и вращается вместе с телом, увлекая за собой все другие внешние взаимодействующие материальные объекты. Но вращение гравитационного поля небесного тела само по себе не может служить источником дополнительной энергии. Нужен какой-то дополнительный эффект в небесной механике. И вот здесь-то и требуется сделать еще один шаг в изучении гравитационного поля, основанный на учете влияния относительного движения тел на силу их взаимного притяжения. В статических условиях, когда тела неподвижны относительно друг друга, сила Q0 их взаимного притяжения пропорциональна произведению масс этих тел и обратно пропорциональна квадрату расстояния между ними (закон всемирного тяготения).



Что же произойдет с силой притяжения, если тела будут сближаться или ударяться относительно друг друга с некоторой скоростью V? Поскольку скорость распространения гравитационного поля относительно излучающего тела имеет конечную величину (обозначим С — скорость поля относительно излучающего тела), следовательно, она зависит также и от скоростей относительного движения тел (полагаем, что закон сложения скоростей справедлив для всех материальных объектов, включая и физические поля).

Благодаря этому сила Q гравитационного притяжения будет зависеть не только от масс тел и расстояний между ними, но и от величины относительной скорости V. Установлено, что при сближении тел, летящих со скоростью V, сила их взаимного притяжения Q будет несколько меньше, чем ее статическое значение Q0(QQ0), a при удалении эта сила будет больше (QQ0).

Зависимость силы Q от скорости V может иметь сложный нелинейный характер.

Между тем зависимость силы взаимного тяготения тел от относительной скорости между ними в классической механике не была учтена. Однако влияние относительного движения тел на физические процессы взаимодействия между ними проявляется повсеместно в природе. В частности, при больших скоростях относительного движения, близких к скорости света, происходят релятивистские эффекты, вызванные существенным изменением сил взаимодействия. Какое же новое качество вносится в небесную механику при количественном изменении сил всемирного тяготения, вызванном скоростями относительного движения тел?

Прежде чем делать широкое обобщение о влиянии скоростей относительного движения тел в небесной механике, необходимо рассмотреть пример, позволяющий уяснить существо данной проблемы для земных условий.





Предположим, что наблюдатель находится внутри космического корабля, летящего вокруг Земли в направлении ее вращения по экваториальной круговой орбите с периодом Т более суток (Т24 часов). Земное гравитационное поле вращается вместе с Землей и совершает один оборот за сутки, обгоняя космический корабль (рис. 106). Рассматривая движение Земли, наблюдатель обнаружит, что поверхность ее восточного полушария будет удаляться от корабля, а западного — приближаться к нему вследствие вращения Земли вокруг своей оси.

Разделим мысленно массу mо Земли на западную и восточную половины полушарий и заменим эти массы на эквивалентные материальные точки (с массами 1/2m0), расположенные в центрах масс полушарий (точки О1 и O2 на расстоянии 1 друг от друга). Если соединить прямыми линиями центры масс земных полушарий и центр массы корабля (точка О с массой m), то образуется равнобедренный треугольник с углом d при вершине (точка О). Сила Q1 гравитационного тяготения западного полушария направлена по линии O1O, а восточного — (Q2) — по линии O2O.

Вследствие суточного вращения Земли с угловой скоростью массы всех частиц восточного полушария будут удаляться от корабля, а западного — приближаться. По этой причине сила тяготения эквивалентной материальной точки восточного полушария (Q2) несколько увеличится, а западного полушария (Q1) — уменьшится. Сумма проекций сил Q1 и Q2 на радиус-вектор, соединяющий центры масс всей Земли и корабля, образуют вектор радиальной силы тяготения Qр. Сумма проекций этих сил на касательную к орбите корабля Qт определяет собой тангенциальную силу. Роль таких сил в динамике движения космического корабля следующая.

Радиальная сила Qр, будучи уравновешенной центробежной силой, создаваемой массой корабля при движении по орбите, обеспечивает определенную величину орбитальной скорости в соответствии с известными ньютоновскими расчетами (скорость обратно пропорциональна корню квадратному из расстояния от центра Земли до корабля). Тангенциальная сила Qт является новым компонентом небесной механики, возникающим при учете угловой скорости вращения распределенных масс небесных тел и относительной скорости их центров масс.

Величину этой силы можно определить, зная, что:

w и w1 — угловые скорости Земли (или земного гравитационного поля) и радиус-вектора корабля (линия, соединяющая центры масс корабля и Земли);

Сп — скорость распространения гравитационного поля;

l — расстояние между центрами масс западного и восточного полушарий Земли;

h — расстояние между центрами масс Земли и корабля.

Замечаем, что величина тангенциальной силы зависит от разности угловых скоростей w и w1.

Если Земля вращается быстрее (ww1), то гравитационное поле обгоняет космический корабль и как бы подталкивает его (сила (Qт0), увеличивая тем самым орбитальную скорость движения. В случае, если угловая скорость Земли меньше w1, сила Qт меняет свое направление на противоположное (Qт0) и становится тормозящей.

При w1 = w, когда период орбитального движения корабля равен земным суткам, тангенциальная сила исчезает (Qт = 0).

В реальных условиях космическое пространство может оказывать некоторое сопротивление движению корабля с силой F, которая зависит от плотности окружающей среды, миделя сечения корабля, коэффициента его аэродинамического сопротивления и, конечно, от орбитальной скорости движения. Продольное движение корабля с орбитальной скоростью Vорб. может быть найдено из уравнения динамики Ньютона, в котором сила инерции корабля уравновешивается разностью сил Qт и F. Если QтF, ТО Тангенциальная сила превосходит силу сопротивления и скорость Vорб корабля увеличивается. При этом центробежная сила массы корабля также возрастает, в результате чего корабль переместится на более высокую орбиту (расстояние h увеличится). Поскольку сила Qт пропорциональна h-3, увеличение расстояния h приведет к резкому сокращению силы Qт до тех пор, пока она не уравновесится силой F. В этом случае наступит динамическое равновесие: тормозящий эффект окружающей среды будет полностью устранен, а корабль будет двигаться по новой стационарной орбите.

Если же сила торможения F будет превосходить Qт, то орбитальная скорость уменьшится, корабль начнет перемещаться на более низкую орбиту до тех пор, пока возрастающая сила Qт не уравновесит силы торможения. Таким образом, вращающееся гравитационное поле небесных тел становится своеобразным регулятором параметров небесной механики в условиях, когда окружающая космическая среда может оказывать сопротивление движению тел.

В рассматриваемом примере анализировалась механика движения гипотетического космического корабля. Но какова же судьба реальных спутников Земли — Луны и искусственных спутников, созданных человеком? Условия для движения Луны вокруг Земли самые благоприятные. Если Земля совершает вокруг своей оси один оборот в сутки (точнее — за 23 часа 56 минут 4,1 секунды), то Луна совершает полный оборот вокруг Земли за 27 дней 43 минуты 11 секунд. Это означает, что гравитационное поле Земли более чем в 27 раз быстрее вращается, чем радиус-вектор, соединяющий центры масс этих небесных тел. Следовательно, на Луну непрерывно действует тангенциальная сила Qт, направленная на преодоление сил сопротивления околоземной космической среды. Параметры орбиты Луны, как следует из помещенных выше выводов, поддерживаются стабильными благодаря тому, что движущая сила (Qт) и сила сопротивления среды полностью уравновешены в данное время.

Более разнообразная ситуация возникает у спутников Марса. Один из его спутников — Фобос — вращается вокруг Марса более чем в три раза быстрее, чем сама планета, тем самым обгоняя вращающееся гравитационное поле. Это означает, что гравитационное поле Марса тормозит спутник Фобос и он должен постепенно снижаться, теряя имеющийся запас кинетической энергии. В конце концов такой «падающий» спутник должен войти в плотные слои марсианской атмосферы, частично сгореть и затем разбиться о поверхность планеты. Более счастливая судьба у другого спутника Марса — Деймоса. Его период обращения превышает марсианские сутки, гравитационное поле планеты обгоняет и подталкивает спутник.

Следовательно, орбита Деймоса является достаточно стабильной и этот спутник можно отнести к числу долгожителей.

Совершенно другие условия складываются для искусственных спутников Земли. Большая часть таких спутников движется по орбитам с периодом менее суток. Это означает, что такие спутники обгоняют вращающееся гравитационное поле Земли. В этом случае разность угловых скоростей w-w10 и тангенциальная сила не ускоряет, а тормозит движение спутников вместе с силами сопротивления окружающей среды. Следовательно, подобные спутники являются «падающими», то есть они постепенно должны уменьшать свою орбитальную скорость и снижаться. Для восстановления первоначальных параметров орбит у таких спутников требуется проводить коррекцию, то есть создавать силу тяги ракетных двигателей для компенсации тормозящего эффекта от суммы сил (Qт + Р).

Из рассмотренного следует, что «гравитационным двигателем» в Солнечной системе является само Солнце. Каковы же условия сохранения параметров движения планет Солнечной системы, учитывая существенную запыленность околосолнечного пространства (влияние солнечного ветра)? Гравитационное поле Солнца является силовой основой динамики движения планет. Угловая скорость вращения (w) этого поля — один оборот за 25 дней 9,1 часа — намного превышает угловую скорость радиус-векторов планет, соединяющих их центры масс с центром массы Солнца. Следовательно, вращающееся гравитационное поле Солнца создает для всех планет ускоряющую тангенциальную силу, помогающую этим планетам преодолевать сопротивление космической среды.

Астрономические наблюдения показывают, что орбиты всех планет Солнечной системы весьма стабильны. Это означает, что в процессе эволюции Солнечной системы каждая планета постепенно перешла на такой режим движения, когда центральная сила тяготения оказалась уравновешенной центробежной силой инерции, а сила сопротивления среды — тангенциальной силой вращающегося гравитационного поля Солнца. При этом надо иметь в виду, что плотность материи, распыленной в пределах Солнечной системы, убывает по мере увеличения расстояния от Солнца. Кроме того, планеты существенно различаются между собой по массе, объему и характеристикам аэродинамического сопротивления, что в совокупности с другими условиями движения и предопределяет большое разнообразие форм и параметров планетных орбит.

В рассмотренной картине мира вращающееся гравитационное поле Солнца является своеобразным двигателем всей Солнечной системы. При этом расходуется кинетическая энергия вращения Солнца на преодоление сопротивления среды движения всех ее планет.

Но не получится ли так, что Солнце израсходует всю свою кинетическую энергию вращения и остановится, а планеты, не ускоряемые тангенциальными силами, постепенно упадут на Солнце? Высказанное опасение вполне обоснованное. Однако и в этом вопросе Природа нашла убедительный ответ. Как известно, в межзвездном и околосолнечном пространстве рассеяно значительное количество материи, которое непрерывно пополняется за счет выбрасывания (излучения) потоков вещества и мелких частиц самим Солнцем и звездами (результат ядерных процессов, происходящих внутри этих небесных тел). Радиальная сила тяготения Qр Солнца притягивает большие массы вещества, рассеянного в окружающей среде (рис. 107). Этот поток вещества (пыль, метеориты и т. п.), устремляясь к Солнцу с нарастающей скоростью, сообщает ему значительную кинетическую энергию и пополняет запасы вещества.

В этом процессе «дозаправки» Солнца интересную роль играют тангенциальные силы Qт вращающегося гравитационного поля. Благодаря этим силам падающая на солнечную поверхность космическая материя приобретает тангенциальную составляющую скорости, направленную в сторону вращения Солнца. Следовательно, на Солнце падают потоки материи из космического пространства не радиально, а под некоторым углом к поверхности, создающие дополнительную кинетическую энергию его вращения и тем самым компенсирующую в какойто мере расходы энергии на движение планет. Конечно, это не «вечный двигатель», но работает он в достаточно устойчивом режиме в течение многих миллиардов лет вполне успешно. Об этом убедительно говорит история существования Солнечной системы.

Есть еще один «трудный» вопрос, связанный с законом всемирного тяготения. По Ньютону, гравитационная сила действует мгновенно и на неограниченное расстояние, то есть с бесконечной скоростью. В начале века пытались наложить ограничение на это принципиальное положение, ссылаясь на теорию относительности, запрещавшую скорости, превышающие скорость света. Как мы уже убедились, подобные «запреты» оказались несостоятельными, от них уже отказываются сами же релятивисты. Но как объяснить дальнодействие гравитационного поля? Прав был Ньютон или в его представления необходимо внести коррективы? Вопросы действительно трудные. Для ответа на них воспользуемся, кроме известных теоретических положений, еще здравым смыслом и логикой. Гравитационное поле обладает удивительным свойством: оно проникает сквозь любое тело или физическую среду, заставляя взаимодействовать одновременно всю массу тела с другим притягивающим телом. Если исходить из принципов, в соответствии с которыми только материальная субстанция, обладающая некоторой массой, может создавать силу взаимодействия, то можно полагать, что и гравитационное поле представляет собой особый вид материи, обладающей распределенной в пространстве массой и, следовательно, способной оказывать силовое действие на другие тела.

Все попытки обнаружить материальный носитель поля, то есть элементарную частицу, создающую гравитационный эффект, окончились неудачей. Измерить скорость распространения гравитационного поля оказалось несравненно сложнее и труднее, чем скорость распространения света. Если источник света можно своевременно включить и измерить время, за которое луч света пройдет определенный путь, то источник гравитации (массу тела) невозможно включить или выключить (тело излучает гравитационное поле непрерывно, и его нельзя заэкранировать), чтобы осуществить измерение скорости распространения поля. Этой особенностью гравитационного поля объясняется и его «дальнодействие». Действительно, поскольку масса тела не исчезает и не возникает вновь, его гравитационное поле все время сохраняется, охватывая огромное пространство. Если другое тело попадает в пределы этого поля, то оно мгновенно (здесь не требуется время для распространения поля, так как оно уже занимает все окружающее пространство) взаимодействует всей своей массой.

Если материя, а вместе с ней и гравитационное поле существуют вечно, а всепроникающая способность этого поля затрудняет измерение его скорости, то возможно ли в принципе решение этой задачи? Говоря о проблеме измерения скорости гравитационного поля, следует исходить из того, что оно, как и всякое физическое поле, имеет конечную скорость распространения относительно своего источника излучения (массы тела) и обладает силовым воздействием на другие тела. Это вселяет надежду на практическую возможность измерения скорости такого поля. Один из способов может быть основан на измерении с помощью гравиметров изменения силы тяжести на поверхности Земли, вызванного движением, например, Луны (приливной эффект), и сопоставления положения этого тела в земной системе координат (скорость гравитационного поля сравнивается со скоростью света, которая известна).

Задача может быть решена и с помощью двух космических летательных аппаратов (КЛА), летящих на одинаковых круговых экваториальных орбитах, но в противоположные стороны.

Тангенциальные силы, действующие на КЛА в результате вращения гравитационного поля Земли вместе с ее телом, будут различные по величине и направлению, а силы торможения со стороны космической среды одинаковые. Измеряя характер изменения скорости полета этих КЛА и параметров их орбит вследствие гравитационного торможения (если периоды обращения КЛА будут менее суток), можно вычислить и скорость распространения гравитационного поля.

Аналогичную задачу можно решать и с помощью одного КЛА. Для этого необходимо направлять с помощью излучателей, расположенных на КЛА, один световой (или радио-) луч вперед по полету в сторону приемника, расположенного на Земле, а другой луч — назад, в сторону другого приемника на Земле. Вследствие изменения сил гравитации дополнительные ускорения и скорости, сообщаемые первому и второму лучам, будут различные. Это позволит с помощью измеренного наземными приемниками эффекта Доплера у каждого луча определить и величину скорости гравитационного поля. Конечно, подобные измерения возможно выполнить только аппаратурой, обладающей чрезвычайно высокими техническими качествами (высоким быстродействием, чувствительностью и точностью измерений).

Подводя итоги обсуждения проблем всемирного тяготения, можно прийти к заключению, что космистский подход и учет изменения гравитационной силы позволили выяснить физические процессы взаимодействия небесных тел и объяснить многие загадки Природы. Повидимому, проникновение в тайны гравитации находится еще в начальной стадии. Главная работа еще впереди.

ВЕЩЕСТВО, СПРЯТАННОЕ В КОСМОСЕ

Из содержания настоящей книги читателю становится вполне ясно, что во Вселенной нет такого места (даже точки!), где бы отсутствовала материя. Если даже в космическом пространстве не наблюдаются никакие небесные объекты, то из этого вовсе не следует, что там вообще ничего нет. Кажущееся пустым и прозрачным пространство на самом деле сплошь заполнено материей, но только в полевой и вакуумной формах. Прав был по-своему старик Аристотель, сказавший однажды, что природа не терпит пустоты. Сколько ему за сей нечаянно оброненный афоризм досталось! А ведь никакой крамолы, если вдуматься, и нет: природа, действительно, не терпит пустоты в том смысле, что не допукает ее существования.

Но здесь возникает еще одна проблема — так называемой «скрытой массы». Новейшая астрофизика, исходя из автоматизированных моделей Вселенной, рассчитала не только ее конечный объем, но и конечную массу (которая, как считают релятивисты, в свое время возникла из ничего, из нулевой точки).

(Между тем элементарная логика подсказывает:

бесконечная Вселенная должна иметь бесконечную массу). Тем не менее одна псевдопроблема немедленно породила другую — псевдопроблему.

Суть ее кратко заключается в том, что расчетное количество массы Вселенной не соответствует наблюдательным, измерительным и экспериментальным данным. Из этого был сделан вывод, что подавляющая часть вещества скрыта от наблюдения (согласно релятивистским расчетам, наблюдению доступны лишь до 10 процентов от всей массы Вселенной). И пошли разного рода гипотезы и гадания, что же из себя представляет «скрытая масса», или невидимое вещество Вселенной. Я поделился своими сомнениями с профессором В. П. Селезневым. И вот какой между нами состоялся разговор.

Профессор. Причиной для «всплесков» идей по поводу «скрытых масс» галактик явились наблюдения вращательного движения некоторых галактик. Было обнаружено, что внешние рукава галактик (компоненты или части галактик) вращаются вокруг центра галактики быстрее, чем можно было бы ожидать, рассчитывая скорость их вращения на основании законов Ньютона.

Действительно, согласно законам небесной механики, орбитальная скорость частей галактики, удаленных от центра ее массы, должна была бы уменьшаться обратно пропорционально корню квадратному из расстояния от них до центра вращения. Наблюдения же показали, что орбитальные скорости вращения различных частей галактик остаются примерно постоянными, даже при расстояниях, превышающих 30 килопарсек от ядра галактики.

Не находя какого-либо разумного объяснения этой загадки природы, некоторые исследователи пришли к заключению, что большая часть массы такой галактики распределена снаружи ее светящейся части, образуя огромную сферу из темного вещества (рис. 108), внутри которой и находится видимая нами галактика. (При этом не объясняется, как можно увидеть светящуюся галактику, если она окружена большой непрозрачной сферой из темного вещества.) Автор. На основе такого предположения создаются различные гипотезы и идеи, позволяющие якобы объяснить возникновение «скрытой массы». Некоторые идеи [55] основаны на том, что «скрытые массы» образовались в результате резкого нарушения симметрии Вселенной за счет чрезвычайно быстрого ее «раздувания» (она будто бы расширилась и выросла более чем на 28 порядков величины за время менее 10–30 секунд!). Не менее «оригинальными»

являются идеи, основанные на том, что «скрытые массы» образованы различными видами «экзотических» веществ, в том числе состоящих из нейтрино (частиц с массой порядка 0,0001 массы электрона), или новой очень легкой частицы — аксона (определена из теоретических предпосылок), или из «космических струн», о которых речь уже шла выше (это якобы протяженные «топологические дефекты», возникающие при нарушении симметрии в ранней Вселенной!), и т. п. Как же можно объяснить этот феномен природы, исходя из известных законов природы?

Профессор. Для объяснения подобных чудес Вселенной надо в первую очередь обратиться к классической механике. Как известно, в этой науке при расчете гравитационных взаимодействий небесных тел размерами тела пренебрегают, а всю массу тела заменяют эквивалентной массой материальной точки; взаимодействие между материальными точками определяют по известной ньютоновской формуле всемирного тяготения. Такое допущение оказалось вполне приемлемым для изучения динамики движения планет и спутников Солнечной системы.

Для изучения же динамики движения галактик такое упрощение в расчетах уже недопустимо, так как их массы распределены в пределах огромного пространства. Однако методический подход Ньютона и в этом случае может остаться справедливым, если распределенную массу галактик представить в виде совокупности взаимодействующих точечных масс и к каждой из них применять известный способ расчета сил гравитации. Тогда сила взаимодействия какого-либо небесного тела с галактикой определяется как результирующий вектор сил гравитационного притяжения этого тела со всеми точечными массами, входящими в состав галактики. Такой способ расчета динамики движения галактик (да и любых систем небесных тел, включая и Солнечную систему) позволяет обнаружить новые их гравитационные свойства и объяснить секрет «скрытых масс».

Автор. Но можно ли хотя бы приближенно оценить особенности распределения сил тяготения в пространстве внутри и вне галактик, без привлечения «скрытых масс»?

Профессор. Конечно, решение такой задачи связано с большими математическими трудностями, так как для этого требуется знать закон распределения масс отдельных небесных тел внутри объема галактики и их расстояния до интересующей нас точки пространства, где располагается наблюдатель. Однако для приближенной оценки можно сделать ряд упрощений.

Например, определим центр масс всей галактики (точка О на рис. 109а) и расстояние r от него до небесного тела с массой mо, на котором находится наблюдатель. Затем плоскостью Ф, проходящей по радиус-вектору r, рассечем галактику на равные по массе половины — А и В. В каждой половине галактики определим центры их масс (точки О1 и О2), которые находятся на расстоянии l1 и l2 от центра масс О. Линии O1m0 и O2m0, соединяющие центры масс половинок галактики с небесным телом mо, повернуты относительно радиус-вектора r на углы a1 и a2 соответственно. Вдоль этих линий действует на тело m0 силы тяготения Q1 и Q2 левой и правой частей галактики. Геометрическая сумма векторов Q1 и Q2 этих сил образует результирующую силу тяготения галактики, действующую на тело m0.

Сравним результирующую силу Q с силой Q*, которая получается, если галактику представлять в виде эквивалентной материальной точки в центре масс (точка О, рис. 109б).

Величина силы Q* будет, согласно закону Ньютона, пропорциональна произведению масс m и М (масса всей галактики) и обратно пропорциональна квадрату расстояния r между ними.

Нетрудно подсчитать, что сила Q будет определяться величиной силы Q*, умноженной на функцию косинуса угла a в кубе.

Такая зависимость означает, что по мере приближения небесного тела m0 к центру галактики сила гравитационного притяжения Q будет уменьшаться (угол a стремится к 90°, а функция косинуса этого угла — к нулю). В частном случае, когда тело m0 окажется в центре галактики, результирующая сила тяготения, действующая на это тело, будет равна нулю. Это можно проверить и без каких-либо расчетов: тело то оказывается удаленным на одинаковые расстояния от масс m1, m2 и силы их тяготения Q1 и Q2 уравновешивают друг друга.

Орбитальная скорость движения V тела m0 вокруг галактики также зависит от характера распределения ее масс. Если обозначить V* скорость орбитального движения вокруг галактики, которая моделируется материальной точкой в центре масс О (рис. 109б), то величина орбитальной скорости V при распределенной массе галактики (рис. 109а) будет отличаться от V* на величину функции косинуса угла a в степени 3/2. Это означает, что по мере приближения к центру галактики орбитальная скорость движения тела m0 будет уменьшаться.

При этом небесное тело, оказавшееся посредине между двумя частями массы галактики m1, не воспринимает какой-либо гравитационной силы от небесного тела с точечной массой m0(Q=0) и может неподвижно сохранять свое положение (V=0) в этой точке пространства. По мере удаления небесного тела m0 от центра галактики растет, постепенно возрастает сила тяготения и орбитальная скорость (рис. 110). Такой характер изменения сил тяготения и орбитальной скорости совершенно не сходится с обычным представлением небесной механики для небесных тел с точечными массами.

Pассмотренная модель распределенной галактики, состоящей только из двух точечных масс m1 (i = 1; 2), является простейшей. Для более полного и точного представления о гравитационных свойствах галактик следует взять много материальных точек m1 (где i = 1, 2, 3…, n) и рассмотреть их суммарное силовое взаимодействие с точечным небесным телом m0.

При этом в общем случае характер изменения гравитационного поля будет аналогичен рассмотренной двухмассовой модели, хотя и будет охватывать все внутреннее и окологалактическое пространство равномерно.

Таким образом, орбитальные скорости небесного тела, которое движется вблизи центра распределенной массы галактики, будут значительно меньше, чем если бы оно двигалось вокруг такой же сосредоточенной массы. Именно этот эффект и был обнаружен при наблюдении реальных галактик в звездном небе. Поэтому данный эффект следует объяснять не существованием в космическом пространстве какой-то «скрытой массы», а как следствие ослабленных сил тяготения галактик из-за того, что их массы рассредоточены в значительных пространственных объемах.

Кстати, заметим, что подобные эффекты можно наблюдать и в земных условиях. Если, например, разместить два тела, каждое с массой m на некотором расстоянии друг от друга (рис. 111), то наблюдатель (или какое-то другое пробное тело), помещенный посередине между этими двумя телами, не будет перемещаться под действием силы тяготения, поскольку она будет уравновешена противоположно направленными силами притяжения Q каждого из тел с массой m. В этих условиях наблюдатель, если он не знает обстановки, может сделать вывод о том, что этих масс вообще не существует. Или, наоборот, если он наблюдает за этими телами, то может сделать вывод, что действие этих видимых масс уравновешивается какими-то «скрытыми» в окружающем пространстве массами.

Автор. Итак, проблема «скрытых масс» в звездном мире может быть объяснена на основе космистского подхода, без привлечения экстравагантных гипотез. По-видимому, подобный подход может уточнить и некоторые «странности», наблюдаемые в земных условиях и в Солнечной системе? В частности, как изменяется гравитационное поле Земли и Солнца, если учитывать их распределенные массы, и как это отражается на движении планет?

Профессор. Рассмотренные выше гравитационные эффекты распределения масс проявляются и у небесных тел Солнечной системы. Возьмем в качестве примера Землю. Прибор П, измеряющий силу тяготения на поверхности Земли (рис. 112), будет показывать величину этой силы меньше, чем в случае сосредоточения всей земной массы в ее центре. Объясняется это тем, что распределенные массы, особенно у верхних слоев Земли в окрестностях расположения прибора, будут создавать силы тяготения Q1, направленные почти в горизонтальной плоскости и в противоположные стороны (составляющие Qx). Это означает, что некоторая (и весьма значительная) часть (В на рис. 112) массы Земли не проявляет себя в общем гравитационном потенциале. Эквивалентная часть земной массы (А на рис. 112), создающая вертикальную силу тяготения, имеет грушевидную, а не сферическую форму.

Автор. Как будет меняться гравитационное поле Земли, если наблюдатель будет спускаться вплоть до самого ее центра по воображаемому «колодцу»?

Профессор. Для изучения этого вопроса осуществим вместе с читателем следующий мысленный эксперимент. Предположим, что в толще Земли сделан колодец глубиной до самого ее центра. При спуске в такой колодец наблюдателя с прибором, измеряющим силу тяготения Земли, обнаружим следующее: сила тяготения будет уменьшаться, а в центре Земли полностью исчезнет (рис. 113). Это объясняется тем, что по мере спуска внутрь Земли часть земной массы, расположенной выше горизонтальной плоскости O1x, проходящей через центр масс чувствительного элемента прибора, будет создавать силу тяготения Qy*, направленную вверх, и тем самым уменьшать результирующую силу Qy тяготения.

Поскольку верхняя часть 1 земной массы создает силу тяготения не вниз, а вверх, симметричная ей часть 2 массы Земли тем самым как бы исключается из тяготения. В результате этого гравитационное воздействие на прибор оказывает только остаточная часть земной массы (3 на риc. 113а). Чем глубже опускается прибор, тем меньше остается доля активной (нескомпенсированной) гравитационной массы Земли (рис. 113б). И наконец, в центре Земли силы тяготения ее масс, расположенных во все стороны симметрично, будут полностью скомпенсированы. Если представить некоторый свободный объем (лабораторию) шаровой формы в центре Земли, то помещенный в нее наблюдатель окажется в условиях невесомости.

При всяком смещении центра масс наблюдателя относительно центра масс Земли он будет возвращаться к центру с некоторым ускорением, вызванным действием весьма малой силы тяготения. (В центре Земли будет состояние устойчивого равновесия.) Автор. Можно ли форму этой удивительной гравитационной «груши» представить в аналитическом виде?

Профессор. Безусловно, можно (см. рис. 114). Уравнение формы этой «груши» можно получить в результате интегрирования всех элементарных сил тяготения, созданных материальными частицами шара 2 по всему объему. Если рассечь объем шара плоскостью Оxy, проходящей через его центр О и центр масс наблюдателя (точка В), находящегося на расстоянии R от центра шара, то любая произвольная точка Аy на линии, образованной пересечением поверхности «груши» с плоскостью Dxy, будет определяться координатами х и y, значения которых приведены на рисунке 114.

Автор. Для практических целей, особенно для космонавтики, очень важно знать закономерности распределения поля тяготения у поверхности Земли и в околоземном космическом пространстве. Какие особенности в это распределение вносит учет распределенности массы Земли?

Профессор. Если наблюдатель будет измерять гравитационную силу в пространстве над поверхностью Земли, то он обнаружит следующие эффекты. По мере увеличения высоты влияние сил тяготения распределенных масс (в первую очередь боковых) убывает, и наконец на значительном расстоянии (несколько радиусов Земли) Землю можно рассматривать уже как точечную массу (см. рис. 115). В частности, при изучении параметров орбитального движения Луны относительно Земли гравитационная модель взаимодействия точечных масс небесных тел полностью «срабатывает». Однако при наблюдении орбит низколетящих искусственных спутников Земли (высота 200–500 км) обнаруживаются некоторые особенности (появляется дополнительная прецессия перигея орбиты и др.), которые обусловлены рассмотренным выше влиянием изменения гравитационного земного поля. Изучая орбитальное движение планет вокруг Солнца, следует учитывать влияние распределенности солнечной массы на силу гравитационного взаимодействия с планетами, расположенными вблизи Солнца. В частности, уменьшение силы тяготения в окрестностях Солнца в первую очередь сказывается на орбитальном движении Меркурия и Венеры. Можно полагать, что именно по этой причине перигелий (ближайшая к Солнцу точка эллиптической орбиты планеты) Меркурия поворачивается с угловой скоростью около 43 угловых секунд за столетие. Аналогичные эффекты наблюдаются и при движении спутников других планет Солнечной системы, если их орбиты расположены на небольшой высоте (доли или единицы радиусов планет). Из рассмотренного следует, что классическая механика далеко не исчерпала своих возможностей, и она может объяснить много загадочных явлений звездного мира без привлечения каких-либо «архиреволюционных» гипотез.

ТАЙНЫ СВЕТА И ТЬМЫ

Космос — неисчерпаемый источник света, энергии, движения, чудесных превращений, круговорота жизни и смерти. Есть, однако, еще немало древних тайн, которые в последнее время почему-то стали выпадать из поля зрения и круга интереса исследователей. Современная физика и базирующаяся на ней космология ввели в научный оборот множество новых понятий без установления какого бы то ни было точного соответствия их объективной действительности.

Таковы, к примеру, понятия уже проанализированных кривизны, сингулярности, суперструн и т. п. Зато достаточно простые и имеющие всеобщую значимость явления, с которыми человек сталкивается повседневно на протяжении всей жизни и исторического развития, совершенно игнорируются и не объясняются. Таковы свет, тьма и огонь (пламя), о которых наука прошлого и настоящего ничего вразумительного до сих пор не сказала.

Ответ на вопрос: что такое огонь (или тьма), невозможно отыскать ни в учебниках, ни в справочниках, ни в энциклопедиях (за исключением толковых или мифологических словарей, где дается либо объяснение терминов, либо сведения о донаучных верованиях и представлениях). В Большой советской энциклопедии (3-е издание) статья «Огонь» поражает отсутствием каких-либо разъяснений, что же такое огонь с точки зрения естествознания (вместо этого говорится об использовании огня в человеческой практике со времен неандертальцев).

Химия и физика дают нам описание процессов, происходящих при горении, ядерных и термоядерных реакциях, но описание это является узким и не раскрывает сущности огня (пламени) и его космической природы. Фактически в познании огня современный человек не ушел намного дальше своих первобытных предков; разница лишь в том, что донаучное познание описывало огонь в поэтическо-мифологизированной форме, а современная наука — с помощью сухих и далеко не полных формул, также являющихся плодом творческого воображения.

Таинство и непредсказуемость огненной стихии лучше всего демонстрирует ежегодное снисхождение Благодатного Огня накануне Святой Пасхи в Храме Гроба Господня в Иерусалиме. В присутствии тысяч молящихся (и, безусловно, не без помощи их энергетическоволевого воздействия) на священном камне, где некогда перед воскресением покоилось снятое с креста тело Спасителя, вспыхивает нерукотворный Огонь, который с помощью двух пучков свечей патриарх Иерусалимский передает всем собравшимся верующим.

Понятно, что здесь имеет место религиозное таинство, то есть тот самый случай, когда человеку не дано и категорически не рекомендуется осмысливать физическую сущность наблюдаемого явления и рационально объяснять его природу. Но факт налицо: огонь выступает посредником между ожидающими чуда людьми и тем неведомым и недосягаемым для обыденного сознания миром, проникнуть в который науке до сих пор не удавалось.

Скорее всего, механизм взаимосвязи между Макрокосмом и Микрокосмом, а также в структуре самого Микрокосма запрограммирован в законах природы с самого начала и является своего рода ее самоохранительным началом. Человеку изначально раз и навсегда не дано переступать некоторую запретную границу, он обречен представлять (познавать) глубинные законы материи и Космоса только посредством разного рода символов, включая и мысленные абстракции. Выход за этот символический барьер возможен, но только с помощью теоретического воображения, а оно само по себе также представляет лишь оперирование символами. Воображение питает и фольклорные образы, а также символы-мифологемы.

И античный мудрец, и ведийский жрец, и славянский волхв, и современный жрец от науки говорят примерно об одном и том же, пытаясь описать одну и ту же объективную реальность, но используя при этом различные системы символов и построенных на их основе языков. Здесь, кстати, лишний раз подтверждается известный тезис А. Ф. Лосева, сформулированный в его классическом труде «Диалектика мифа»: всякая наука сопровождается и питается мифологией, черпая из нее свои исходные интуиции. С точки зрения единых закономерностей выражения и постижения действительности через символы, современная наука столь же мифологична, сколь научна всякая мифология.

Современные естественно-математические науки, включающие космологию и ее ответвления, ничто без упорядоченных математических символов. Посредством этих символов создается научная картина мира, с их помощью она и прочитывается. Убрать символы — и останется одна пустота, ничто. Тайна космического мышления не в последнюю очередь заключена в символах. Познай их — и ты познаешь все. Приятно это кому бы то ни было или неприятно, но следует набраться мужества и признать: человек, познавая действительность, практически никогда не имеет дел непосредственно с этой действительностью, но лишь с набором некоторых символов и кодов, включая собственные ощущения, более чем опосредованно данную действительность отражающие. И безразлично, в какой именно форме искажается объективная действительность, представляя в мозгу то в виде мифологических картин и сцен, то в виде поэтических или фантастических образов, то в виде метафизических схем, то в виде математических формул.

Судя по всему, именно Огонь является связующей стихией между Микрокосмом и Макрокосмом, между Человеком и энерго-информационным полем Вселенной. Так считал еще Гераклит, опиравшийся, впрочем, в своих воззрениях на древнейшую, общую для индоевропейцев традицию. «Единым логосом огонь устроил все в теле согласно своей собственной природе: (он сделал тело человека) подобием Вселенной, малое (Микрокосм) соответственно большому (Макрокосму) и большое соответственно малому» (подражание Гераклиту у Гиппократа: Досократики, в пер. А. Маковельского, I, 173). Этот фрагмент приводит С. Н.

Булгаков с тем, чтобы дать свое истолкование единства Макро- и Микрокосма, увязав его с концепцией Всеединства:

«Человек в своей причастности Человеку небесному объемлет в себе все в положительном всеединстве. Он есть организованное все или всеорганизм. „И как в росинке чуть заметной // Весь солнца лик ты узнаешь, // Так слитно в глубине заветной // Все мирозданье ты найдешь“ [стихи А. Фета. — В.Д.]. Он есть логос Вселенной, в котором она себя сознает… Как метафизический центр мироздания, как все-организм, человек в каком-то смысле есть это все, ему подвластное, имеет это все, знает это все».[56] Применительно к бесконечной Вселенной в ее неразрывном единстве с космическим кораблем — планетой Земля — и его фатально обреченной корабельной командой — человечеством — натурфилософский аспект вселенскости огня и огненной стихии прозорливо и вдохновенно раскрыл Тютчев в одном из шедевров своей философской лирики:

Как океан объемлет шар земной, Земная жизнь кругом объята снами;

Настанет ночь — и звучными волнами Стихия бьет о берег свой. … Небесный свод, горящий славой звездной, Таинственно глядит из глубины, — И мы плывем, пылающею бездной Со всех сторон окружены.

Непреодолимую методологическую трудность обнаруживает и проблема тьмы. Ночное небо, издавна поражающее и вдохновляющее людей своим звездным великолепием, в большей своей пространственной части представляет собой тьму, а не свет. По древней натурфилософской традиции — индийской, китайской, византийской (Иоанн Дамаскин), тьма считалась самостоятельной субстанцией (а не отсутствием света, как принято объяснять в современной учебной и справочной литературе). Древние эллины также считали тьму первичным началом: по Гесиоду, все многообразие мира произошло от соития Ночи и Мрака, которым, однако, предшествовал Хаос; по Гигину, напротив, Тьма (Мгла) сначала самостоятельно произвела на свет Хаос, а лишь затем, разделив с ним брачное ложе, произвела на свет весь видимый и невидимый мир. Античные философы — и, в частности, неоплатоник Прокл в комментариях к платоновскому «Тимею» — обосновали существование «непроницаемой тьмы» как последнего глубинного основания Природы. Тьма, с данной точки зрения, — «огромная бездна, беспредельная по всем направлениям», «последняя бесконечность», объемлющая весь мир. Она — «местопребывание первосуществ, в котором нет ни границ, ни дна, ни опоры».

Обстоятельно философская концепция тьмы разработана в «Ареопагитиках», написанных под значительным влиянием неоплатонизма. Входящий в корпус Псевдо-Дионисия Ареопагита трактат «Мистическое богословие» начинается с главы «О сущности таинственного мрака», в которой говорится об излучении тьмы и ее сверхъестественных лучах. Неизвестный автор так формулирует задачу теоретического осмысления проблемы (которая, добавим от себя, до сих пор не получила внятного физического истолкования): «Этот мрак светит в самой мрачной тьме, превосходя всякую ясность, и, оставаясь во всяческой непроницаемости и незримости, преисполняет прекраснейшим блеском умы, плененные очами». Да и более близкие к нам по времени мыслители настаивали примерно на таком же подходе. Достаточно неожиданным, к примеру, представляется в гегелевской «Философии природы» утверждение, что тьма обладает самостоятельным, отличным от света существованием, а материя есть по существу то же, что и тьма. Теоретическая физика и космология на новых витках своего развития возвращаются к этой старой философской концепции.

Известно и представление, не просто выводящее огонь из тьмы, но и полагающее, что сама тьма является огнем, хотя и «черным»: «Тьма» — это черный огонь, сильный цветом. Есть красный огонь, сильный видимостью, желтый огонь, сильный формой, и белый огонь, цвет которого заключает в себе все.

«Тьма» же — наисильнейший из всех видов огня, и именно он обуял «тоху» [ «хаос». — В.Д.]. «Тьма» — это огонь, но огонь не есть тьма, кроме того случая, когда он охватывает «тоху».

[Кстати, образ «черного огня» использовал Василий Розанов для названия одной из своих последних книг. — В.Д.]. Точно так же и в «Ареопагитиках» используется понятие «сияющей тьмы».

Современные представления единства Макро- и Микрокосма во многом опираются на торсионную теорию Мироздания, предполагающую непрерывное накопление информации во Вселенной, ее мгновенное распространение и возможность считывания разумным существом в любой точке Космоса. Торсионные (скрученные) поля связывают воедино все уровни природной иерархии и позволяют естественным образом объяснить многие доселе непостижимые явления.

Согласно торсионной теории, Вселенная как «Супер-ЭВМ» образует с человеческим мозгом своеобразный биокомпьютер, работающий в соответствии с торсионными законами, то есть, говоря без затей, по принципам скрученной спирали. Неспроста, видно, философы-диалектики всех времен в один голос утверждали: природа, история, род людской и отдельные индивидуумы развиваются по спирали.

По законам голографии, любая материальная микроскопическая структура содержит и позволяет воспроизвести информацию обо всем Мире. Возникает вопрос — как голографическо-торсионная модель Вселенной сопрягается с выводом о субстанциональном характере тьмы. Приведем наглядный пример: в телескоп наблюдатель видит не только множество удаленных галактик, но и тьму в их окрестностях. Спрашивается: с какой скоростью достигает Земли информация об окологалактической тьме? С той же конечной скоростью, что и галактический свет? Или со своей особой скоростью, быть может, превышающей световую? А может, мгновенно, и мы видим тьму, на каком бы расстоянии от наблюдателя она ни находилась, в тот самый момент, когда устремляем на нее взор. (Даже констатация факта несовпадения между скоростями распространения света и тьмы приводит к серьезным коррективам — если не пересмотру — многих фундаментальных физических представлений.) Этот вопрос мне как-то довелось задать главному теоретику и разработчику торсионновакуумной модели Космоса Г. И. Шипову, [57] предложив использовать в качестве методологической основы для поиска оптимального решения философские принципы русского космизма. В личной беседе Г. И. Шипов согласился истолковать соответствующим образом полученные им математические выводы. В частности, было признано целесообразным интерпретировать субстанциональность торсионных полей, имеющих мгновенную скорость перемещения, с космической тьмой как носителем таких голографически насыщенных полей.

Одновременно признано перспективным и увязывание самого физического вакуума — источника и носителя торсионных полей («Абсолютного Ничто, которое есть Абсолютное Все», по афористической терминологии Г. И. Шипова) — с космической тьмой как самостоятельной объективной субстанцией.

Представляется также, что при дальнейшем познании и объяснении названных выше и других не до конца познанных природных явлений необходимо учитывать закономерности целостности. Все части Космоса взаимодействуют с Целым и через это Целое взаимодействуют между собой: каждая несет информацию, которая посредством своих носителей распространяется повсюду. Наподобие улья: закономерности поведения отдельных пчел обусловлены законами, присущими всей массе пчел, то есть законами улья. Изучая поведение отдельных пчел, мы узнаем очень и очень многое, но не узнаем главного — законов улья, которые вовсе не складываются механически из закономерностей поведения индивидов. То же можно сказать о современной физике и космологии: они изучают отдельные частицы, волны, поля, но в их инструментарии почти нет методов, способов и математического аппарата для описания целого. Да и задача такая практически не ставится (за исключением разве что теории множеств).

Применительно к человеку такая целостность в общем уже определена. Это — космическая среда во всем ее многообразии и неисчерпаемости. Последовательное применение методологии космизма позволяет более четко и всесторонне постичь саму проблему. Так в пределах земного шара — микроскопической песчинки в масштабах Вселенной — целостностью, о которой упомянуто выше и в границах которой осуществляется вся многогранная деятельность живых индивидов, выступает биосфера (ее теорию с наибольшей полнотой разработал В. И. Вернадский).

Биосфера и есть тот энергетический котел в пределах Земли и окружающих ее полей, общий для всего живого, из которого осуществляется подпитка и накачка всех жизненных систем и отдельных их элементов — растений, животных, людей, находящихся в рамках биосферы в неразрывном единстве. Человек неотделим от природы во всем ее многообразии. Он не может существовать без света, воздуха и воды, без растений и животных, дающих ему пищу.

Все названное и образует энергетическую основу жизни. Но этим не ограничивается жизнесфера людей. Связанная с невидимыми космическими силами (гравитация, антигравитация, фотонное и противофотонное поле — тьма), она простирается в бескрайние просторы Вселенной. В границах ноосферы и техносферы (второй искусственной природы) громадное значение приобретает информационное поле, создаваемое устной и письменной речью, печатью, радио, телевидением, разного рода компьютерами, произведениями искусства и сопряженное множеством выявленных и невыявленных каналов с неисчерпаемым энергополем Большого и Малого Космоса. Наконец, глубинные неизведанные пока силы обеспечивают мышление, генетическую преемственность поколений, прием и передачу всех видов информации в пределах целостных материальных систем, а в конечном счете — внутри информационного «банка» Вселенной.

Прибежище тьмы, однако, вовсе не одно лишь космическое далеко или покров ночи. Это просто иллюзия ясного солнечного дня, что весь мир вокруг нас наполнен светом или что человек — исключительно «дитя света». Уже под ногами, в недрах Земли безраздельно царит абсолютная тьма. Да и внутри человеческого тела отнюдь не царство света, а в основном доминирует тьма. А сон? Он ведь тоже — царство тьмы, хотя и нарушаемое картинами сновидений. Почти треть жизни нормального человека проходит во сне, представляющем собой естественное и неотъемлемое состояние жизненных процессов.

Еще один поразительный факт: свободное космическое пространство наполнено бесчисленными летящими отовсюду и во все стороны фотонами; их мириады пронизывают ежемгновенно любой и каждый уголок Вселенной. Но в Космосе от этого не делается светлей.

Сами по себе фотоны невидимы и не светятся. Свет возникает при их взаимодействии с вещественной средой, например, при попадании на сетчатку глаза. Так что же тогда первично — свет или тьма, если последняя есть всегда, а фотоны возникают только при определенных условиях? Вот и получается, что тьма более фундаментальная физическая субстанция, не сводимая к пустому пространству, лишенному света. Тьма — особая форма движения материи, ее исконно-первичное состояние.

Она — носитель, а в ряде случаев и источник света. Она же (но во взаимодействии со светом) — аккумулятор информационного поля Вселенной. Сначала и всегда была Тьма и потом только появился Свет — о том и Библия говорит.

И все же человек всегда стремится к свету, радуется ему, прославляет его, даже обоготворяет в виде светил — Солнца, Луны и звезд. Без света немыслимо ничто живое — ни растения, ни животные. Но вот парадокс — о свете, его подлинной природе и истинных закономерностях человечество до сих пор знает столь же мало, как и о тьме. Среди ученых даже сложился афоризм: «Самое темное в науке — это свет!». Конечно, геометрическая оптика, электромагнитная и квантовая теория многое приоткрыли в тайнах природы. Однако хорошо известно: чем больше мы узнаем и вырастает объем нашего знания, тем больше у этого массива точек соприкосновения с неисчерпаемым океаном незнания. Следовательно, тем больше возникает все новых и новых проблем.

Современная фотонная теория опирается на сложнейший математический аппарат, в ней почти отсутствуют наглядные представления. Более проста и понятна активно разрабатываемая в последние годы тороидальная модель фотона (В. П. Селезнев и др.), вполне сопрягаемая с торсионной теорией вакуума. Согласно тороидальной модели, фотон представляет собой объемное кольцо в виде тора («баранки»), обладающее переменной скоростью, что дает возможность объяснить все известные световые явления, предложить новые высокоэффективные технологии и преодолеть многие противоречия и тупики, возникшие на пути развития современной физики, астрономии и космологии. [58] Но и это всего лишь шаг для прорыва познания к подлинному пониманию фундаментальной роли света в эволюции Универсума и Социума. Ориентирами же для дальнейшего продвижения вперед могут служить идеи, сформулированные еще в начале нынешнего века выдающимся русским физиком Н. И. Умовым и великим первооткрывателем космической эры К. Э. Циолковским.

Умов последовательно придерживался энергетическо-информационного подхода в постижении Вселенной как «вечного настоящего»; его математическое обоснование взаимодействия массы и энергии на три десятилетия опередило соответствующие формулы и выводы теории относительности.

Энергетизм распространялся Умовым и на человека — «сына неба [Космоса] и светозарного эфира», порожденного «океаном лучистой энергии».[59] Циолковский пошел еще дальше: он не только провозгласил космическо-световое бытие человечества основой его существования и развития, но и рисовал грандиозные картины лучисто-энергетического будущего цивилизации.

В разработанной Теории Космических Эр основоположник отечественной и мировой космонавтики предсказал четыре основных стадии информационноэнергетического развития Вселенной и Человечества:

1. Эра рождения;

2. Эра становления;

3. Эра расцвета;

4. Эра терминальная.

Каждая из эр должна продолжиться, по Циолковскому, от нескольких до сотен миллиардов лет. На конечной же стадии эволюции Вселенной вещество превратится в свет, и человечество перейдет «в лучистую форму высокого уровня», станет бессмертным во времени и бесконечным в пространстве. Так возникнет «лучистое человечество».[60] Другими словами, человек выработает и обретет способность растворяться в энерго-информационном поле, черпая и обращая в свою пользу его неисчерпаемый потенциал. Микрокосм становится Макрокосмом!

МНОГОЛИКИЙ ФОТОН

В понимании современной науки фотон — частичка света, которая обладает одновременно и волновыми, и корпускулярными свойствами. Популярно объяснить это никто не берется.

Предпочитают обычно ограничиться математическим описанием.

Между тем существует вполне доступное даже непосвященным наглядное представление о фотоне. Предоставим вновь слово специалисту в области космических проблем профессору В. П. Селезневу. В данном случае он развивает соответственную тороидальную модель фотона.

Попробуем предоставить, — говорит он, — возможный облик фотона или его упрощенную модель, отвергая тем самым сложившееся убеждение о том, что это частица — «элементарная».

Начнем с корпускулярных свойств фотона. Всякая корпускула (микроскопическое тело) должна обладать массой, количеством движения или импульсом, проявляемом в относительном движении. Поток корпускул, падая с какой-то скоростью на поверхность тела, производит механическое давление. Опыты со светом показали, что поток света оказывает давление на поверхность тела (например, зеркала) по тем же закономерностям, что и обычный корпускулярный поток. Это означает, что фотон, как и обычная корпускула, обладает массой, не зависящей от скорости ее движения. Корпускулярные свойства света подтверждаются также фотоэффектом.

Но как же корпускулы проявляют свои волновые свойства? Чтобы ответить на этот вопрос, проанализируем движение различных вращающихся тел и остановимся на движении колеса (рис. 116). Пусть оно катится по горизонтальной поверхности с некоторой скоростью. Отметим, что при встрече с препятствием колесо окажет на него силовое давление (удар) как корпускула.

Теперь обратим внимание на движение частиц обода колеса при его равномерном движении, каждая частица совершает одновременно два движения — вперед (поступательное со скоростью С вместе с осью колеса) и вращательное (с угловой скоростью w вокруг оси вращения). Таким образом, траектория движения любой частицы обода представляет собой волнообразную кривую (циклоиду).

Следовательно, корпускулярно-волновую природу фотона допустимо объяснить как результат движения корпускулы, летящей со скоростью света и одновременно вращающейся вокруг своего центра масс.

Для разъяснения данного вопроса обратимся к математике. Допустим, фотон обладает множеством физических свойств, тогда каждый независимый по своему содержанию физический опыт может раскрыть какую-то одну (в редких случаях две или более) особенность или свойство фотона. Для того, чтобы получить необходимое количество свойств фотона (например, n), требуется иметь такое же количество независимых уравнений, полученных в результате проведения соответствующего количества разных опытов. Решая совместно это уравнение, можем получить n искомых физических свойств фотона, характеризующих более полную картину его природы.

В том случае, когда количество опытов, а следовательно, и уравнений, меньше числа искомых характеристик изучаемого объекта (информационная недостаточность), решить задачу становится невозможно. Иногда недостающие уравнения восполняют гипотезами, то есть уравнениями, основанными не на опыте, а на догадке или предположении. В этом случае при совместном решении уравнений (вытекающих из опыта, а также гипотетических) получаются искомые данные, в которых содержатся элементы принятых гипотез. Сказанное означает, что при использовании ошибочных гипотез все результаты решения задачи также будут ошибочными. Попробуем последовательно углубиться в изучение природы фотона, привлекая один за другим только известные экспериментальные результаты.

Установлено, что энергия фотона описывается формулой E = mc2. Если бы фотон, как корпускула, двигался поступательно и с постоянной скоростью, то его энергия была равна E1 = 1/2 mc2. Почему же действительная энергия фотона в два раза больше по сравнению с энергией поступательно движущейся корпускулы такой же массы? Ответ на этот вопрос можно найти, если представить форму фотона в виде тороида (аналогично круглой баранке), вся масса m которого расположена на периферии. При вращении такого фотона вокруг оси, перпендикулярной плоскости симметрии тороида, с окружной скоростью равной C = wr, где w — угловая скорость и r — радиус фотона, у него появится энергия вращательного движения равная E = 1/2 Jw2 (J — момент инерции), учитывая значение J = mr2 для тороида и величину w = c/r, получим E2 = 1/2 mc2. Следовательно, полная энергия фотона будет равняться сумме энергий поступательного E1 и вращательного E2 движений, то есть mc2, что и подтверждает справедливость предположения о тороидальной форме фотона.

Следовательно, фотон можно представить в виде быстровращающегося тороида с окружной скоростью равной С, центр масс которого (точка О на рис. 117) летит относительно излучателя со скоростью света — с. При этом фотон приобретает гидроскопические свойства, вектор его угловой скорости вращения перемещается параллельно самому себе, не поворачиваясь относительно инерциального пространства. Отметим, что плоскость, в которой движутся материальные компоненты фотона, как раз и является плоскостью поляризации света. Свойства поляризации света наблюдаются в природе при прохождении световых лучей в земной атмосфере, а также в оптических экспериментах (при пропускании света через прозрачные вещества, поляризующие его).

Рассмотренная модель фотона позволяет определить и физическую сущность постоянной Планка (h). Сопоставляя формулу для определений энергий mc2 = nh, где n — частота света, приходим к заключению, что постоянная Планка является кинетическим моментом фотона.

Величина кинетического момента определяется массой фотона, длиной его радиуса (расстояние от центра вращения до центра масс сечения тороида) и угловой скоростью вращения тороида и не зависит от скорости относительного движения фотона. Все это дает основание принимать кинетический момент фотона за постоянную величину, соответствующую постоянной Планка.

Интересно, что же происходит с фотонами во время известных опытов с аннигиляцией элементарных частиц. Экспериментально установлено, что при аннигиляции электрона и позитрона возникает фотон, и, наоборот, при определенных условиях взаимодействия фотон распадается на электрон и позитрон. Вообще-то термин «аннигиляция» (означающий «уничтожение») применен в физике не вполне удачно. В действительности никакого уничтожения массы и энергии в этих превращениях не происходит, и закон сохранения массы — энергии выполняется совершенно строго.

Сам факт возможного разложения фотона на микрочастицы с положительными и отрицательными зарядами дает возможность более детально представить его модель в виде сложного материального образования кольцевой формы. Кольцо фотона не сплошное, а составлено из отдельных микрочастиц, заряженных поочередно положительными и отрицательными зарядами. Для наглядности такую модель можно представить в виде кругового хоровода (рис. 118), в котором мужчины Мi (условно — отрицательно заряженные микрочастицы) чередуются с женщинами Жi (положительно заряженные микрочастицы).

Удерживая друг друга за руки (имитация сил притяжения положительно и отрицательно заряженных микрочастиц), участники хоровода сохраняют его целостность, несмотря на действие центробежных сил инерции, стремящихся разорвать кольцо хоровода.

В отличие от известной модели атома Резерфорда-Бора, в которой содержится ядро, а вокруг него вращаются по орбитам электроны (силы взаимодействия направлены радиально), предлагаемая здесь модель фотона не содержит ядра. Все положительные и отрицательные микрочастицы движутся по одной и той же круговой орбите, а силы взаимодействия Qi (i=1, 2…

n) между ними направлены по хордам, соединяющим центры масс микрочастиц. Для существования такого «хоровода» необходимо, чтобы число положительно и отрицательно заряженных частиц было одинаковым. Следовательно, суммарный заряд в такой модели фотона должен быть равен нулю. Известно, что реальные фотоны электрически нейтральны.

Следовательно, модель по данному признаку совпадает с реальностью.

Зная размеры фотона (длина волны) и его массу (из опыта с давлением света), можно из уравнения его динамики движения, учитывающего равенство сил взаимодействия между электрическими зарядами и силами инерции масс микрочастиц, найти общее число микрочастиц и их массу (масса фотона равна сумме масс микрочастиц). Рассматривая подобную кольцеобразную модель фотона, можно заключить, что чем меньше диаметр этого кольца, тем короче длина волны света. Однако не возникает ли здесь противоречия: ведь известно, чем меньше l и больше частота n, тем значительнее энергия фотона.

Насколько удовлетворяет этим требованиям рассматриваемая модель фотона? Подобное сомнение вполне закономерно. Чтобы разрешить его, необходимо рассмотреть динамику движения микрочастицы фотонного кольца, обозначим ее массу mi (i = 1, 2… N, N — число микрочастиц в фотоне). Если фотонное кольцо вращается с угловой скоростью w = c/r,r — радиус фотонного кольца, то центробежная сила инерции каждой микрочастицы F = miw2r уравновешивается силами кулоновского притяжения двух соседних микрочастиц (справа и слева от mi). P = 2Qsina, где Q = kЧq2/l2; l = ar — расстояние между центрами микрочастиц, a = 2p/N — центральный угол между соседними микрочастицами, q — электрический заряд каждой микрочастицы.

Приравнивая силы F=Р, после элементарных преобразований получим величину энергии модели фотона:

E=mc2= AN2 AN2 w r c2 где А = kЧq2/p — постоянная величина.

Из приведенных формул следует, что при сохранении неизменным количества микрочастиц в фотоне N его энергия возрастает при уменьшении радиуса фотонного кольца r и, соответственно, увеличении частоты его вращения w = c/r. При этом расстояния (1) между микрочастицами уменьшаются, а силы притяжения Q возрастают. Таким образом, чтобы эти возросшие силы притяжения уравновесить центробежными силами, фотон должен вращаться с большей угловой скоростью.

Следовательно, рассматриваемая модель фотона удовлетворяет не только здравому смыслу, но и энергетическим формулам Эйнштейна и Планка. На этом, по-видимому, исчерпываются возможности более детального представления модели фотона, основанного на системном подходе и учете данных известных на сегодня физических опытов со светом. Системный подход позволяет изучить свойства любых других «элементарных» частиц до такого уровня детализации, который обусловлен количеством накопленной экспериментальной информации.

Вполне естественно возникает вопрос: как можно представить процесс излучения фотона, обладающего рассмотренной выше структурой? Далее проанализируем особенности предлагаемой модели фотона при различных ситуациях его существования. Сопоставляя размеры элементарных частиц — электрона, протона или атома — с тороидальным фотоном, замечаем, что фотон по своим размерам намного превосходит эти частицы, а его масса, наоборот, на несколько порядков меньше каждой из масс этих частиц. Это дает основание полагать, что фотон, притягиваясь к какой-либо частице охватывает ее своим кольцомтороидом.

Можно представить себе такую модель строения элементарных частиц вещества: вокруг каждой из них вращаются кольцеобразные фотоны Фi (i = 1, 2… к) наподобие колец Сатурна (рис. 119). Чем короче световая волна, тем меньше диаметр di фотонного кольца и расстояние его от поверхности частицы, тем сильнее взаимодействие между ними. Если частица будет тормозиться или колебаться вследствие удара или изменения температуры тела, то при определенных условиях силы инерции массы фотона преодолеют силу его взаимодействия с частицей, вследствие чего произойдет срыв фотонного кольца с этой частицы, то есть излучение кванта света. По мере возрастания ускорений движения частицы (например, при повышении температуры тела) от нее будут отделяться фотоны все меньшего и меньшего диаметра, обладающие большими силами взаимодействия с частицей. Подобный процесс наблюдается на практике: чем выше температура тела, тем более коротковолновый спектр света им излучается.

Излученный фотон движется в вакууме равномерно и прямолинейно со скоростью света относительно излучателя. Если на своем пути он не встречает другие тела, не отражается и не поглощается ими, то он летит в пространстве, будучи невидим каким-либо наблюдателем.

Увидеть такой фотон можно в том случае, если он непосредственно попадает в глаз. Вследствие невидимости фотонов, свободно летящих в космическом пространстве, наблюдателю, находящемуся в космическом летательном аппарате (КЛА) на большой высоте (в стратосфере и выше), межзвездное пространство представляется абсолютно черным. Голубой цвет неба в дневное время, который видит человек в повседневной жизни, является следствием рассеяния и поглощения потоков солнечного света атомами и молекулами воздуха.

В последнее время тороидальные модели сделались объектом пристального внимания ученых. Особенно перспективными представляются они при познании глубинных уровней строения материи. В полной мере сказанное относится и к раскрытию тайн света (и тьмы).

Фотон по-прежнему таит в себе множество загадок. Вот одна из них. В каждом кубическом сантиметре космического пространства содержится N фотонов, несущих практически полную информацию обо всех объектах Вселенной, численность которых в принципе бесконечна.

Спрашивается: каким именно образом ограниченное количество фотонов передает информацию о таком бесконечном числе объектов? И наоборот: как каждый отдельно взятый конечный объект передает по существу бесконечное число фотонов, которые должны наполнить информацией о данном конечном объекте всю бесконечную Вселенную (дабы в каждой точке пространства содержался необходимый объем информации)?

ЗАГАДКИ КОСМИЧЕСКОГО ИЗЛУЧЕНИЯ

У световых фотонов и их потоков, помимо тайны происхождения и самой их физической природы, есть еще одна, не менее волнующая загадка, связанная с закономерностями их распространения. Данная проблема представляется актуальной в рамках теории относительности, или по-другому — релятивистской теории (от лат. relativus — относительный).

Вопреки распространенному мнению и несмотря на устоявшееся наименование, теория относительности на самом деле является теорией типичной абсолютности, в которой на месте старых низвергнутых абсолютов были немедленно воздвигнуты новые (что обычно предпочитают замалчивать). На эту характерную черту научного детища Эйнштейна, кстати, обращал внимание еще Макс Планк: одна из его работ на данную тему так и называлась — «От относительного к абсолютному» (ее перевод на русский язык публиковался отдельной брошюрой единственный раз в Вологде в 1925 году).

В релятивистской теории абсолютизировано все — от оснований до следствий. Имеются также и неявные, замаскированные абсолюты, играющие тем не менее роковую и самоубийственную роль. Так, в теории относительности, вопреки очевидности и формально провозглашенному равноправию всех (то есть неограниченного множества) иперциальных систем отсчета, абсолютизируются всего лишь две из них, находящиеся друг с другом в совершенно конкретных отношениях равномерного и прямолинейного перемещения (что, собственно, и описывается при помощи преобразований Лоренца). А формальноматематические результаты, полученные применительно только к этим двум системам отсчета, затем произвольно обобщаются и экстраполируются на весь многообразный мир. На этой абсолютизированной основе и покоится все здание теории относительности, обросшее за время ее существования множеством пристроек. В действительности — и в этом суть — количество соотносящихся друг с другом физических тел и процессов или же материальных систем — неисчерпаемо. Причем закономерности их соотношения (существуют особые законы отношения, как правило, никем не учитываемые) таковы, что отношения даже трех систем — а тем более и множества — не тождественны отношению двух (то есть минимума).

Кстати, и в специальной теории относительности (СТО), вопреки господствующему представлению, действуют не две, а три системы отсчета: третьей выступает свет (то есть совокупность рассмотренных выше фотонов) — реальный, самостоятельный и независимый от механического перемещения инерциальных систем электромагнитный процесс. В Лоренцовых преобразованиях реальное световое движение отображено в виде самостоятельного члена — с, причем таким образом, что с ним (а точнее — с его абсолютизированной скоростью, возведенной в ранг абсолютной константы) соподчиняются остальные два члена реального трехэлементного отношения, а именно — движущаяся и покоящаяся системы отсчета. Уже отсюда следует, что распространенные интерпретации преобразований Лоренца некорректны по той простой причине, что не учитывают трехчленность описываемой в них реальной системы, принимаемой за двухчленную.

Между тем достаточно сопоставить с двумя (или тремя) системами отсчета, абсолютизированными в рамках СТО, еще одну или несколько — и весь храм релятивистской физики зашатается.

Ничто не мешает, к примеру, взять 4–5–10–100 и т. д. систем отсчета и произвести поочередные или групповые преобразования их пространственных и временных координат. И всякий раз перед изумленным взором будет открываться «новый дивный мир», который зачастую не способен вместить человеческое воображение, если только не отвлечься от того самоочевидного факта, что каждая из образуемых в результате математических преобразований моделей действительности — всего лишь игра нашего теоретического мышления или, как говорили в старину, спекулятивная конструкция, подгонять под которую природу — одно из самых бесполезных и неблагодарных дел. Зыбкость релятивистской картины мира обнаруживается, если произвести «обращение» положенных в ее основу формул. Поскольку все системы отсчета равноправны, постольку любую из них можно считать условно покоящейся, в таком случае другая (или другие) будет условно движущейся. Например, пуля, выпущенная из пистолета, может быть принята в качестве условно покоящейся системы отсчета; в таком случае сам пистолет, стрелок, земная поверхность, окружающая среда и т. д. могут быть рассмотрены как движущиеся относительно условно неподвижной пули. Чтобы воочию убедиться в искусственности и абсурдности подобного подхода в понимании фундаментальных закономерностей материального мира, в качестве условно неподвижной системы отсчета достаточно взять одиночный фотон (или группу фотонов). Оказывается, что при этом весь остальной объективный мир во всем его многообразии и неисчерпаемости должен, согласно канонам СТО, разлетаться со световой скоростью относительно условно неподвижного фотона.

Аналогичным образом можно рассмотреть и движение фотонов относительно уже неоднократно упоминавшейся космологической сингулярности (бесконечно плотной точки, радиус которой близок к нулю) после пресловутого «Большого взрыва». Любой фотон, находящийся на границе расширяющейся световой сферы, может быть принят за условно неподвижную систему. В таком случае сингулярная точка должна рассматриваться как система координат, удаляющаяся со световой скоростью от каждого такого фотона. Нет необходимости добавлять, что одновременное удаление центральной точки сразу от всех фотонов, расположенных по кромке сферической волны, является верхом алогичности и бессмысленности, на чем вряд ли станут настаивать даже самые твердолобые апологеты релятивистской теории. Тем самым наглядно обнаруживается принцип самоликвидности, изначально заложенный в релятивистской теории: достаточно последовательно довести до логического конца ее собственные постулаты (то есть произвести обращение преобразований), и вся теоретическая система самоликвидируется ввиду непреодолемых противоречий.

Но в теории относительности абсолютизируются отношения не только инерциальных систем и их составляющих, но также и особый способ определения одновременности удаленных событий с помощью посылки электромагнитного сигнала к удаленному объекту и соответствующих расчетов после его возвращения назад. Однако, подобный трудноосуществимый способ не является единственно возможным. Во-первых, синхронизация часов может быть произведена при помощи не только искусственных, но и естественных сигналов. Естественными природными сигналами являются, к примеру, вспышки сверхновых звезд, распространяющиеся в виде гигантских сферических световых волн в Галактике и далеко за ее пределами. Так, в феврале 1987 года все информационные агентства мира собщили о вспышке сверхновой звезды в галактике Большое Магелланово Облако, которая произошла 170 тысяч лет назад (такое время потребовалось свету, чтобы достичь Земли).

Сферическая волна, образовавшаяся в результате вспышки этой сверхновой звезды, как бы живет самостоятельной жизнью во Вселенной, подчиняясь конкретным физическим законам.

Подобно колоссальному, космических размеров мыльному пузырю, непрерывно расширяющемуся со скоростью света и охватывающему все новые и новые просторы Вселенной, она «засекает» фронтом своего прохождения неисчислимое множество разнообразных материальных объектов. Отсюда следует, что прохождение световой волны через определенные участки Галактики, фиксируемое в виде начала вспышки (или ее окончания), является одновременным для всего неограниченного множества точек, расположенных на одинаковом расстоянии от источника. Все события, происходящие в данный момент на этих участках космического пространства, будут одновременными. Если в данных точках разместить атомные часы, которые включались бы в момент прохождения волны, то все эти часы, разделенные каким угодно расстоянием, заработали бы одновременно и пошли синхронно.

Во-вторых, одновременность можно зафиксировать без всяких сигналов, опираясь в основном на геометрические и тригонометрические методы (хотя и учитывая при этом физические и космические процессы). Например, добиться синхронизации удаленных друг от друга часов вполне допустимо путем измерения углов. Так, на основе учета периода собственного вращения вокруг оси Земли и Марса, а также их движения вокруг Солнца, на обеих планетах можно найти две такие точки, где заранее выбранная звезда будет наблюдаться под одним и тем же углом. Данный момент и позволит синхронизировать некоторые исходные точки временного отсчета на обеих планетах (рис. 120).

Предлагаемый способ определения одновременности вовсе не ограничен пределами Солнечной системы. Ничто не мешает расширить его до галактических масштабов. Обозначим Землю по-прежнему точкой А, точку В свяжем с каким-нибудь материальным объектом в противоположном конце нашей Галактики, а точкой С обозначим удаленную соседнюю галактику, но такую, которая находилась бы под удобным для измерений углом (рис. 121).

(Конечно, более наглядным вариантом для разъясняемого случая явилась бы объемная модель Вселенной, но чертеж также позволяет уловить суть дела.) Если перпендикулярно к направлениям АС и ВС в точках А и В запустить игрушечные волчки с засечками, то моменты прохождения засечек через линии АС и ВС были бы приблизительно одновременны (разумеется, с учетом конечной скорости света). Волчок — слишком грубый измерительный «прибор», но нам он нужен только для аналогии. Для абсолютно точных замеров уместно воспользоваться оптическими (лазерными) гироскопами (приборами, где два лазерных луча движутся навстречу друг другу по замкнутому, близкому к окружности пространству). Предположим, что на линиях АС и ВС, перпендикулярных к бегающим лазерным лучам, установлены счетчики фотонов.

Каждое «щелканье» счетчика в точке А будет одновременным со «щелканьем» в точке В.

Интервалы между двумя «щелканьями» тоже одновременны.

Конечно, все это несколько усложненные и громоздкие мысленные эксперименты, требующие дополнительной информации об условиях их проведения. Но они понадобились, чтобы продемонстрировать две простые истины: 1) Сигнальный способ определения одновременности, развиваемый в релятивистской теории, не является единственно возможным.

2) Атомные часы в любой точке Вселенной идут синхронно и отбивают ритм настоящего, фиксируя в каждом уголке бесконечного материального мира неуловимое «теперь» (каждый промежуток времени между тактами, отбиваемыми атомными часами, равен одной тысячемиллионной доле секунды). Сказанное — самоочевидные факты. Ибо настоящее не может быть в разных точках разным: скажем, в нашей Галактике оно настоящее, а в какой-либо другой — прошлое.

Проблема эмпирического мгновения — одна из глубочайших загадок природы, при решении которой вскрывается реальное содержание, не менее богатое, чем то, которое нами осознается в безбрежности пространства-времени Космоса. На примере распространения сферической световой волны наглядно видно, что любые события, оказавшиеся в определенный момент времени на линии фронта прохождения волны, объективно происходят в одно и то же мгновение. В литературе широко распространена точка зрения, согласно которой понятие мгновенности не имеет физического смысла, поскольку оно будто бы является следствием преодоленного наукой представления о дальнодействии и бесконечных скоростях. Однако подобный подход вытекает из глубоко укоренившегося мнения об отсутствии скоростей, превышающих скорость света. Мифический закон «предельности скорости света», представляющий собой типичную абсолютизацию и фетишизацию конкретного математического соотношения, не выдерживает никакой критики.

Вывод о существовании якобы непреодолимого «светового барьера» зиждется на сугубо формальных основаниях:

подкоренное выражение релятивистского коэффициента Ц 1- V2 C2 обращается в нуль, если V = с, а извлечение корня из нуля недопустимо.

Законы математики есть законы математики — против них ничего не попишешь. Однако одно дело объективные физические закономерности, и совсем другое — их математическое описание.

Все эффекты, вытекающие из преобразований Лоренца, касаются в первую очередь численных значений, возникающих из соотношения между механическим перемещением инерциальной системы отсчета и процессом распространения света. Данное объективное отношение, будучи выражено в математической форме, может принимать любые численные значения, включая нулевые и бесконечные. Но это вовсе не налагает непременного запрета на движение в зависимости от того, что получается в результате конкретных математических преобразований или расчетов — нуль или бесконечность. Если вместо скорости света подставить в релятивистские формулы скорость звука (что вполне допустимо, и такие подстановки, отображающие реальные физические ситуации, делались), то получится аналогичный результат: подкоренное выражение релятивистского коэффициента способно обратиться в нуль. Но никому же не приходит в голову утверждать на этом основании, будто бы в природе недопустима скорость, превышающая скорость звука. Чем же в таком случае оправдать абсолютизацию математического отношения, из которого якобы вытекает «предельность скорости света»?

Уже многие ревностные адепты релятивистской теории признали нелепость предположения о невозможности превзойти скорость счета в вакууме. Уже разработана экспериментально подтвержденная торсионная теория (о которой подробно говорилось выше), допускающая любые скорости, превышающие скорость света. [ Добавим, что еще раньше то же самое на основе своей тороидальной модели фотона теоретически обосновал В. П. Селезнев;

полученные выводы были подтверждены с помощью оригинальной установки, в основу которой были положены лазерные гироскопы и система зеркал]. Уже получили объяснение пульсары — звездные объекты с мощными источниками радиоимпульсов. Пульсар, как игрушка-волчок, быстро вращается вокруг собственной оси, а направленный радиолуч за короткий промежуток времени описывает во Вселенной гигантские окружности, задевая при этом и нашу Землю.

Скорость, с которой мчится по кругу конец радиолуча, значительно превосходит скорость света.

Наконец, уже обнаружены внегалактические объекты, обладающие собственной сверхсветовой скоростью. А рьяные авторы, талмудистски трактующие релятивистские формулы, продолжают по-прежнему дезориентировать доверчивых читателей, накладывая бессмысленные запреты и ограничения как на законы природы, так и на процесс общенаучного познания.

Казалось бы, релятивистская теория с самого начала задает нам космический настрой, задает направления и ориентиры, позволяющие постигнуть глубинные закономерности структуры и эволюции Вселенной. Однако при ближайшем рассмотрении исходных оснований и конечных выводов, при раскрытии их материальных корней обнаруживается, что базисные понятия, принципы и добытые с их помощью результаты имеют совершенно иное объективное содержание, иногда прямо противоположное тому, которое виделось творцам релятивистской картины мира. Однобокая и мистифицированная, она оказывается наименее совместимой с живым, многоцветным и неисчерпаемым Космосом, и прежде всего потому, что подгоняет его уникальное многообразие под тощие абстракции, оторванные от той самой природной действительности, которую они отображают.

ОТНОСИТЕЛЬНОСТЬ — ФУНДАМЕНТАЛЬНАЯ ТАЙНА

МИРОЗДАНИЯ В проанализированных фактах проявляется методологическая абстрактность релятивистских теоретических интерпретаций, их полнейший отрыв от конкретной действительности или, говоря философским языком, умышленный уход от конкретного анализа конкретной ситуации. Самой абстрактной из всех абстракций в системе современного теоретического знания выступает понятие «отношение», являющееся основополагающим во всех естественных науках, связанных с математикой, и в самих математических дисциплинах. Между тем данное понятие, как ни странно, не было подвергнуто методологическому анализу даже в релятивистской теории, где понятие «отношение» положено в само название теории относительности. Странная, скажем прямо, ситуация для науки: объявляют принцип относительности исходным, возводят в ранг критерия применительно ко всем остальным следствиям, но не задаются главным, коренным вопросом, что же такое относительность как ипостась реальности и что такое образующие ее отношения как объективная действительность.

Другими словами, наука довольствуется чистой абстракцией «отношение».

Между тем относительность — всеобщее универсальное свойство материального мира, проистекающее из его космического всеединства. В данном случае относительность выступает как всеобщее и неотъемлемое свойство ее природы, поскольку каждое из конечных проявлений находится в неисчерпаемых отношениях со всеми остальными.

Однако в реальных познавательных ситуациях относительность изучается, как правило, не в качестве всеобщего и универсального свойства (такая задача, да и то отчасти, стоит только перед философией), а в виде совершенно определенных отношений между определенными вещами или же элементами, организованными в целостную систему. В таком случае об относительности говорят, во-первых, в смысле конкретных отношений, свойственных тому или иному явлению, а, во-вторых, в смысле относимости (отнесенности) определенных свойств, характеристик, параметров и т. д. к одному или ко всем элементам, находящимся в данном отношении.

В бесконечной развивающейся Вселенной относительность проявляется в форме многообразных материальных отношении (физических, космических, химических, биологических, информационно-сигнальных и др.). И именно космическое видение предмета исследования позволяет понять конкретность отношений в том реальном виде, в каком они проявляются в природе.

При познании объективных природных отношений необходимо учитывать ряд моментов.

Прежде всего укажем на неисчерпаемость тех отношений, в которые может вступать любая материальная вещь. По существу любой объект — песчинка, молекула, атом — находится во множестве отношений со всем бесконечным многообразием материального мира. В ходе познания неизбежно приходится отвлекаться от бесконечного многообразия этих отношений, вычленяя отдельные из них и сосредоточивая на них внимание.

Отношения носят конкретный характер. Принцип конкретности истины позволяет четко определить, о каких именно отношениях идет речь в каждом отдельном случае. «Отношений вообще» не существует. Это либо материальные, либо идеальные отношения.

В свою очередь, они могут быть подразделены на:

1) изолированные и взаимосвязанные;

2) внешние и внутренние;

3) двучленные и многочленные;

4) прерывные и непрерывные и т. д.

В зависимости от конкретного характера отношение может принимать то или иное (подчас прямо противоположное) значение. Например, детский воздушный шарик больше биллиардного по объему, но меньше по весу; Солнце больше Луны по массе, но угол, под которым оно наблюдается с Земли, меньше (поэтому и возможны солнечные затмения).

Наконец, об отношениях и результатах конкретных отношений судят, как правило, по тем субъектам, вещам, элементам, которые в данном отношении находятся. А между тем отношения не изменяют самого субъекта отношений, хотя, разумеется, обусловливают его свойства, функции или же деятельность (если речь идет о человеке). Так, один и тот же мужчина может на протяжении своей жизни последовательно, а подчас и одновременно находиться в различных родственных отношениях: сначала он сын, брат, племянник, в дальнейшем — муж, зять, отец, дедушка.

На данный аспект обращал внимание еще Лейбниц:

«Может произойти перемена отношения без всякой перемены в субъекте. Тиций, являющийся сегодня отцом, перестает им быть завтра без всякой перемены в нем только потому, что его сын умер».

Понятно, что изменение родственных отношений не изменяет внешнего облика их носителя (естественное старение здесь, разумеется, ни при чем), хотя и накладывает на человека определенные обязанности, которые в конечном счете обусловливают его конкретные действия.

Но подобное отношение, при котором субъекты (или образующие его элементы, если имеется в виду неживая или досоциальная природа) вступают во взаимодействие, является уже связью.

Таким образом, абстрактных отношений, «отношений вообще» (то есть ни к чему не относящихся) в материальной действительности не существует.

Бессмысленность и абсурдность отрыва отношений от своих носителей и тех объективных реалий, которые они соединяют, наглядно обнаруживаются на примере грамматики. Так, предлог как вспомогательная часть речи служит для обозначения отношений одних слов к другим. Конкретный смысл в словосочетаниях или предложениях предлоги обретают лишь в контексте тех слов, которые с их помощью соединяются.

По одним предлогам («на», «в», «от», «из», «к», «у» и т. д.) без связуемых невозможно понять, о чем пойдет речь в предложении, для этого необходимо обратиться к реальному тексту.

Точно так же и с релятивистскими математическими отношениями: нам как бы предлагается текст, состоящий из одних предлогов. Ограничиваться этим просто недостаточно — необходимо сделать следующий шаг: перейти от отношений к их носителям и тем реалиям, которые ими соединены или соподчинены.

Необходимое условие конкретного (а следовательно, правильного) понимания отношений — различение отношений внешних и внутренних. Существующее между ними различие имеет исключительно важное значение, ибо закономерности, присущие внешним отношениям, отнюдь не тождественны закономерностям, характеризующим отношения внутренние. Если элементы, образующие внешние, изолированные отношения, не зависят друг от друга, то элементы внутренних отношений связаны между собой в рамках определенной системы.

Любые внешние отношения могут считаться таковыми только до известного предела; всегда имеется определенная система, по отношению к которой они выступают уже как внутренние.

Предельно общей системой для всех объективно реальных отношений является Вселенная как единое целое. Собственно говоря, в виде самостоятельных внешних отношений они способны функционировать лишь до тех пор, пока не подвергаются воздействию со стороны более общей системы. Так, Солнце и вращающиеся вокруг него планеты являются более общей системой по отношению ко всему, что связано с Землей (включая и человеческое общество). Поэтому внезапная гибель Солнца и распад Солнечной системы привели бы к уничтожению всех имевшихся в рамках существовавшей системы внешних (то есть не связанных между собой) отношений, которые в данном предельном случае проявляли бы себя уже как внутренние (то есть неразрывно связанные с целостной системой).

Итак, проблема заключается в следующем: представляют ли собой отношения нечто единообразное, монотонное и настолько очевидное, что над ними вовсе не стоит ломать голову.

Или же, напротив, они далеко не бескачественны, не бестелесны и не бесструктурны, им присущи характерные особенности, и, как все в объективном мире, отношения подчиняются определенным закономерностям, находящимся, в свою очередь, в неразрывной взаимосвязи с другими природными законами.

Ведь зачастую специфика и многообразие отношений нивелируются; даже если и делается различие между внешними и внутренними отношениями, то закономерности, отличающие их друг от друга, отождествляются. Случается, что один из видов отношений возводится в ранг универсальности, абсолютизируется, а свойства, характеризующие конкретную определенность отношений (то есть их конкретное основание), переносятся на все многообразие отношений, составляющих данное явление. В действительности же отношения одного типа далеко не в каждом случае оказывают непосредственное влияние на отношения другого типа, отличного от первого по конкретному основанию. Подобная абсолютизация и нивелировка заходят еще дальше: отношения, представляющие собой сосуществование определенных элементов, отождествляются с самостоятельным существованием самих элементов или образуемой ими системы.

Нетрудно понять, почему происходит такое отождествление. Поскольку об отношениях обычно судят по соотносящимся субъектам, вещам, элементам и т. п., постольку и понятия, обозначающие конкретные отношения, подчас невольно переносят на сами эти вещи, элементы, на самих субъектов. Называя человека чьим-то братом, как бы персонифицируют понятие данного родственного отношения, переносят его на само лицо, отождествляя с конкретным индивидом, хотя понятие «брат» не означает ничего, кроме соответствующего родственного отношения, и ни у кого на лице не написано, что он (она) чей-то (чья-то) брат (сестра).

При этом конкретный анализ конкретной ситуации не просто указывает на материальную основу объективных отношений (это первый, но не единственный шаг в процессе познания). Он помогает установить также и конкретный характер данных отношений. Например, большинство физических закономерностей получает строгое математическое описание и выражается в виде разнообразных формул. Любая такая формула сама по себе есть определенное математическое соотношение, элементы которого находятся во внешней количественной взаимозависимости.

Подобная структура формулы всего лишь результат знакового выражения, в то время как сами объективные отношения, описываемые формулами, могут быть не только внешними, но и внутренними. В свою очередь, проекция абстрактно-математического описания (формулы) на природную действительность помогает точно установить конкретный характер объективных отношений, отображенных в той или иной формуле.

Так, большинство химических формул описывает либо внутреннюю структуру вещества, либо внутренние отношения в процессе химических реакций. А многие физические формулы, описывая внешние отношения между природными процессами и явлениями, вместе с тем раскрывают и внутреннюю закономерную связь. Например, закон Кулона (и соответствующая ему формула) фиксирует не только внешнее отношение между двумя покоящимися электромагнитными зарядами, но и силу данного взаимодействия.

Характерная особенность абстрактного мышления (как и художественного) состоит в том, что оно может свободно манипулировать понятиями (и представлениями), способно конструировать из них «сцепления» любой степени сложности. Но от игры нашей мысли, воображения и фантазии материальная действительность не меняется. Она действует по собственным законам, а не по произволу мышления. Поэтому при обосновании понятий, разработке теории или получении новых выводов задача науки — не произвольно интерпретировать концептуальные результаты, а объяснять их в строгом соответствии с отображенными в них сторонами, отношениями, законами материального мира и закономерностями самого процесса познания.

Так, понятия, образующие математическую формулу (как об этом уже говорилось выше), находятся между собой в «жестких» отношениях в составе конкретной формулы и отображают столь же конкретные отношения (или законы как устойчивые, повторяющиеся, необходимые связи и отношения) материального мира.

Исходя из всего вышесказанного, уместно суммировать закономерности объективных отношений, играющих непреходящую роль в осмыслении Космоса, всех природных и социальных явлений, а также в любой из фундаментальных или частных наук, логике, методологии и теории познаний.

1. Отношение представляет собой сосуществование конечных материальных или идеальных элементов. И те, и другие подразделяются на внешние и внутренние.

2. Элементы, находящиеся во внешнем отношении, не зависят друг от друга.

3. Элементы внутренних отношений связаны друг с другом в рамках определенной системы.

4. Внутренние отношения, составляющие определенную целостность, будучи абстрагированными от данной целостности, могут рассматриваться по отношению друг к другу как внешние.

5. Если элементы, находящиеся во внешнем отношении, начинают взаимодействовать, то они образуют систему и преобразовываются во внутренние отношения.

6. Для любой системы внешних отношений можно отыскать другую систему, по отношению к которой они будут выступать как внутренние.

7. Общей системой для всех объективно-реальных отношений является Вселенная как единое целое.

8. Особым типом отношения между материальным (первичным) и идеальным (вторичным) является психическое отражение. Мысленные отношения представляют собой образы (схемы, модели, матрицы) отношений объективной действительности (включая и отношение к ней познающего и преобразующего субъекта). Идеальные отношения отображают материальные опосредованно, а будучи оторванными от последних — искаженно.

9. Отношения между идеальными элементами — и внутренние (в процессе индивидуального мышления), и внешние (при обмене информацией или в процессе коллективного мышления) — складываются свободно, но истинность полученных выводов (а также истинность и правильная упорядоченность знания, участвующего в мыслительных актах) полностью зависит от их соответствия объективной действительности.

10. Элементы материальных отношений (внешних и внутренних) выступают в виде определенного субстрата. Результат соотнесения (сопоставления, сравнения) различных субстратов и представляет собой отношение. Без субстрата нет отношения.

11. Материальный субстрат не тождественен отношениям, в которых он находится. Само отношение (как результат сопоставления материальных элементов) носит объективно-реальный характер, но не имеет собственной субстратной формы, отдельной от элементов отношения.

12. Отношение (результат сопоставления) двух материальных элементов (субстратов) не тождественно отношению трех и более элементов. И наоборот.

13. Отношение конкретно: как не существует отношения без образующих его элементов, так и не существует отношения без определенного признака, по которому соотносятся элементы.

14. Изменение отношения по одному признаку не обязательно ведет к изменению по другим признакам.

15. Изменение субстрата элементов, находящихся во внешнем отношении, изменяет само отношение. Изменения в отношениях элементов не влияют непосредственно на материальный субстрат.

16. Внутренние отношения целостной системы непосредственно обусловливают ее структуру и состояние. Изменение внутренних отношений системы приводит к изменению самой системы и влияет на внешние отношения, в которых она находится. Изолированные внешние отношения системы не влияют на ее внутренние отношения.

В отличие от конкретного подхода к сути объективных отношений в релятивистской теории и всех ее интерпретациях абстрактностью заражено не только представление о самих отношениях, но и о носителях таких отношений. Поскольку нет и не может быть отношений без того, что относится, постольку в каждом конкретном случае необходимо указывать на ту физическую (или иную) реальность, которая находится в тех или иных отношениях. Даже если в математических формулах присутствует такой совершенно конкретный физический процесс, как свет, он понимается изолированно и односторонне (например, в релятивистских формулах свет рассматривается лишь со стороны его скорости). И только космистский подход, космическое мышление и космическое видение предмета позволяет понять и представить свет (или фотон) в целостной взаимосвязи с другими природными процессами и явлениями. Тем самым свет предстает не в виде изолированных лучей в соотнесении с перемещающимися механическими системами отсчета, а во взаимоотношении с другими электромагнитными полями, звездным и галактическим миром. Космическое видение мира не приемлет какой бы то ни было абстрактизации, возведенной в ранг абсолюта. Космос — это всегда многоцветие жизни, света и других явлений природы. И именно это позволяет преодолеть абсурдность ряда интерпретаций в понимании конкретных физических явлений.

Так, в своего рода самостоятельную — и даже овеществленную — сущность превращена в релятивистской теории (да и не только в ней) скорость. Скорость — важнейшая характеристика движения материальных объектов. Однако напомним, что скорость, выражая отношение пространства (пути, расстояния) ко времени, как самостоятельная субстанция в природе не существует (реально наличествуют лишь движущиеся тела и процессы). Тем не менее абсолютная световая константа в теории относительности выступает в качестве самостоятельносамодовлеющей и по существу субстанциализированной величины. Не останавливаясь специально на мифическом «законе предельности скорости света», отвергнутом самими же релятивистскими ортодоксами, коснемся хотя бы вскользь другого теоретического фантома — так называемого принципа постоянства скорости света.

В повседневной и научной практике обычно измеряется скорость какого-либо одного материального объекта относительно другого. При этом неизбежно происходит отвлечение (абстрагирование) от движения других аналогичных объектов. Действительность же такова, что каждое движущееся тело находится в неисчерпаемых разноскоростных отношениях с бесчисленным множеством других физических тел, непрерывно перемещающихся в разных направлениях и с различными скоростями. Другими словами, скорость не является уникальной характеристикой материальных тел, наподобие протяженности или массы. Одному и тому же телу одновременно присуще неисчерпаемое множество скоростей различной величины.

Если же еще раз теперь попытаться сопоставить с данным непреложным фактом так называемый принцип постоянства скорости света, то со всей очевидностью обнаруживается полная несостоятельность и абсурдность последнего. Для этого обратимся еще раз к движению одиночного фотона, рассматриваемому в соответствии с правилами релятивистской игры в качестве условно неподвижной системы отсчета. Рассмотрим сквозь призму данной конкретной ситуации постоянство скорости света. Если бы такое было бы возможно на самом деле, то, произведя вновь «обращение» релятивистских формул, мы немедленно обнаружили бы: в ситуации условно покоящегося фотона любые источники и приемники света (то есть все бесконечное многообразие объектов материального мира) обязаны были бы двигаться относительно такого фотона с одной и той же постоянной и неменяющейся скоростью, что противоречит самоочевидным фактам. Кроме того, достигая приемника, в качестве которого выступает любой объект на пути движения света, фотон теряет свою первоначальную скорость (с 0), и уже поэтому его скорость не может считаться всегда постоянной.

По мнению В. П. Селезнева, опыт Майкельсона, доказавший якобы невозможность обнаружения механического эфира, а значит, и отсутствие такового, не является доказательством правильности постулата постоянства скорости света. Это связано с тем, что интерферометр как прибор, предназначенный для фиксации смещения длин волн, в принципе не может служить для измерения скорости электромагнитного излучения, а отрицательный результат опыта Майкельсона (отсутствие интерференционной картины) служит доказательством постоянства длины волны — не более.

Иными словами, в распространенных трактовках теории относительности все кинематическое и электродинамическое богатство Космоса пытаются в угоду чисто формальным соображениям подогнать под изначально уязвимую схему постоянства скорости света. Наподобие ловких портных в сказке о голом короле, нас хотят уверить (и, как ни странно, большинство с этим соглашается), что в неисчерпаемой и многообразной Вселенной световые волны двигаются с одной и той же неизменной скоростью ко множеству других объектов, которые в это же самое время перемещаются с различными, не совпадающими друг с другом скоростями.

Космос всегда олицетворял бесконечность пространства и вечность времени, он же являет собой всеобъемлющий пространственно-временной Континуум. Релятивистская картина мира, претендующая на истину в последней инстанции, в главных своих частях также опирается на своеобразно истолкованные реалии пространства, времени, бесконечности (неограниченности);

вместе с тем ей не только недостает системности и целостности, но и в отдельно взятых фрагментах этой научной мозаики при внимательном и непредвзятом рассмотрении обнаруживаются серьезные изъяны. Для подтверждения сказанного достаточно беспристрастно проанализировать релятивистские эффекты, относящиеся к пространственно-временным параметрам в движущихся системах отсчета.

ПРОСТОЙ СЕКРЕТ СЛОЖНЫХ ФОРМУЛ

Какую же, в таком случае, реальность описывают знаменитые релятивистские формулы, вытекающие из преобразований Лоренца? Только ту, которая зафиксирована в самих формулах, — и никакую другую, причем не в космических масштабах, а в строго определенных границах, очерченных самими же формулами: есть две системы отсчета — условно неподвижная и условно перемещающаяся (в любое время их можно поменять местами), а параллельно равномерному и прямолинейному перемещению движется луч света (что-то вроде следующего: лодка (в темноте) отплывает от берега, а в корму ей светят фонариком).

Обратимся к двум релятивистским формулам, хорошо известным из школьного курса физики:

Из приведенных формул следует, что в материальной системе отсчета, движущейся равномерно и прямолинейно относительно условно покоящейся системы и связанного с ней наблюдателя, временные промежутки «растягиваются» (течение времени «замедляется», отчего родители-космонавты могут якобы оказаться моложе собственных детей, оставшихся дома), а пространственные длины сокращаются. То есть по формуле: tyt0; ly l0 Так ли это? Разумеется, так. Но весь вопрос в том, как понимать фиксируемое «растяжение» и «сокращение». Вытекает ли из формул, что «замедляется» всякое время, связанное с перемещающейся системой отсчета, — и продолжительность жизни, и процессы мышления или рефлексы и биоритмы? И действительно ли укорачивается космический корабль, сплющиваются в нем все предметы, живые организмы и сами космонавты? Если рассуждать последовательно-реалистически, то упомянутые эффекты непосредственно из релятивистских формул не вытекают, а являются следствием их свободного истолкования.

Формула, как это ей и положено, описывает (отображает) строго определенные физические параметры и процессы, которые, собственно, и фиксируются в виде символических обозначений. Физическая формула может описывать только физические (а не химические, биологические, социальные) закономерности. Прямая экстраполяция формул на целостную Вселенную также недопустима. В данном смысле приведенные выше релятивистские формулы раскрывают всего лишь объективное отношение между механическим перемещением тела и синхронно-совместным с ним движением света. Соотнесенность этих двух физических явлений зафиксирована в подкоренном соотношении понятий v2 (скорость равномерного и прямолинейного перемещения инерциальной системы) и с2 (скорость света, движущегося параллельно той же системе). И то, и другое соотносится с третьим элементом реального трехчленного отношения — условно неподвижной системой отсчета.

Для наглядного пояснения действительной сути релятивистских эффектов воспользуемся образом Люмена, созданного Камилом Фламмарионом. Он был не только неутомимым пропагандистом новейших достижений естествознания, но и плодовитым автором, на книгах которого училось не одно поколение ученых во всем мире в конце прошлого — начале нынешнего века. Книги Фламмариона знала вся образованная Россия, не говоря уже о плеяде русских космистов. Несомненно их влияние и на научно-фантастическую прозу Циолковского.

Большинство научно-популярных и беллетризированных работ Фламмариона переведены на русский язык. Среди них научно-фантастический роман «Люмен» (в одном из переводов на русский — со значительными дополнениями — он называется «На волнах бесконечности»).

Люмен — бестелесное человекоподобное существо, дух, обуреваемый жаждой познания Вселенной и наделенный волшебным качеством — способностью мгновенно, со скоростью мысли перемещаться в любую точку пространства, наблюдать (подобно другому, уже упоминавшемуся фантому — демону Максвелла) любое физическое явление и даже общаться с потусторонним миром. Люмен мгновенно перемещается по бесконечным просторам Космоса, а возвратившись на землю, рассказывает об увиденном своему ученику (в форме их диалогов и написан весь роман).

Помимо воображаемого описания далеких миров, расположенных в различных созвездиях, и их обитателей, Фламмарион устами Люмена описывает поведение света в Космосе. Известно, что любая информация, идущая с помощью электромагнитных волн с Земли и имеющая конечную скорость, приходит к другим далеким мирам с запозданием на сотни и тысячи лет (подобно тому, как с запозданием доходит до Земли свет умерших звезд). Люмен, в частности, развлекается тем, что, перегнав свет, дожидается его в какой-то далекой звездной системе, а затем наблюдает живые картины исторического прошлого Земли (например, подробности событий Великой французской революции). Представляется, что с помощью Люмена нетрудно будет разобраться в физическом смысле релятивистских эффектов, касающихся света и пространственно-временных параметров движущихся объектов.

Итак, перенесемся мысленно вместе с Люменом на просторы Вселенной. Представим условно покоящийся прожектор, расположенный на уединенном космическом объекте, мимо которого с околосветовой скоростью, равномерно и прямолинейно проносится космический корабль (рис. 122). Прожектор включается и посылает световое излучение вслед ракете в момент, когда ее хвост оказывается в точке, возможно близкой от прожектора. Такая ситуация «соприкосновения» особенно удобна, поскольку позволяет, так сказать, непосредственно добиться одновременности событий и снять те вопросы, которые обычно возникают в теории относительности по поводу синхронизации часов. Для наибольшей наглядности поместим Люмена на кончике светового луча (точнее — фронта световой волны, поскольку сам свет в космическом пространстве невидим).

Допустим, что в покоящейся системе отсчета по ходу движения ракеты размещены ориентиры, позволяющие измерить пройденное расстояние. Предположим также, что Люмен запасся хронометром и намерен произвести некоторые расчеты. Сидя верхом на световом луче, он смог бы без труда констатировать уже известный нам факт: в различных системах отсчета свет за одно и то же время (по хронометру Люмена) проходит разный путь, а одинаковое расстояние преодолевает за различные промежутки времени. Так, за время, пока луч света преодолевает в покоящейся системе отсчета расстояние MN, равное длине ракеты, относительно удаляющейся ракеты он продвинется только до точки В. Другими словами, в движущейся системе световой луч пройдет расстояние, меньшее, «сокращенное» по сравнению с неподвижной системой координат (и тем меньшее, чем выше скорость ракеты). Аналогичным образом свету, излучаемому неподвижным прожектором, потребуется для преодоления длины летящей ракеты большее время, чем для прохождения того же самого расстояния в покоящейся системе (налицо все то же пресловутое «растяжение»

временных событий).

Мысленный эксперимент можно повторить и в земных условиях, совершив воображаемое путешествие на поезде в точном соответствии с условиями, заданными в преобразованиях Лоренца. Рассмотрим движение светового луча, параллельного перемещению поезда и железнодорожному полотну. Для упрощения понимания даваемых разъяснений лучше всего представить, что поезд идет не по открытой местности, а вошел в туннель. Это позволит представить одновременное отображение распространения светового луча или фронта световой волны на стенках вагонов поезда и на стене туннеля. А для того, чтобы результаты измерений сделать зримыми и легко сопоставимыми, уместно допустить, что внешние стенки вагонов в стене туннеля покрыты фотоэмульсией.

Представим (рис. 123), что у входа в туннель неподвижно закреплен источник света — О, посылающий сигнал — ОР в направлении движения поезда MN. Источник включается в тот самый момент, когда с ним поравняется конец последнего вагона. Луч света движется вдогонку уходящему поезду. По мере того, как свет достигает головы состава, происходит засветка фотоэмульсии на стене туннеля и на внешних стенках (или крышах) вагонов по всей длине поезда.

Если допустить, что длина туннеля и железнодорожного состава достаточно велика, а поезд движется с околосветовой скоростью, то получим следующие результаты мысленного эксперимента. Чем выше равномерная скорость поезда, тем большее время потребуется свету, чтобы достичь головного вагона (это происходит потому, что начальная точка состава непрерывно убегает; по мере продвижения поезда вперед свет займет положение МyNy. Если свет, догоняющий поезд, погаснет, как только достигнет головной точки (или отразится зеркалом в обратном направлении), то картина засветки фотоэмульсии на внешних стенках вагонов будет отличаться от картины, получившейся на стене туннеля.

Что же именно произойдет? Чтобы воочию уяснить это, поезд по окончании эксперимента придется остановить и вернуть назад к въезду в туннель. Если поместить конец последнего вагона вровень с источником света (то есть совместить точки А, М, O, откуда начиналось движение светового луча), то тень засветки на стене туннеля АВy=ОР окажется по длине больше, чем длина самого поезда — MN, и, соответственно, больше тени засветки на внешних стенках вагонов от их исходной до конечной точки. МN=MyNy, но MNABy…{1}

К ЗВЕЗДАМ БЫСТРЕЕ СВЕТА!

Автору уже доводилось совершать мысленный сверхсветовой полет. И неоднократно. Его спутником и вожатым в этом увлекательном путешествии был опять-таки профессор В. П. Селезнев. Мы даже две книги на эту тему совместно написали. Одна так и называется «К звездам быстрее света: Русский космизм вчера, сегодня, завтра» (М., 1993). Уместно воспроизвести здесь основные вехи сверхсветового полета в космические дали, где между соавторами развернулся такой диалог.

Автор. Выявление закономерности движения материальных тел, света и полей гравитации показало, что никаких ограничений в скорости относительного перемещения не существует.

Почему бы нам не представить, как будет происходить космический полет со сверхсветовой скоростью? Поскольку существует такая возможность, мы можем ею воспользоваться как первопроходцы для дерзновенного научно-технического подвига — совершить, хотя бы мысленно и в мечтах, полет быстрее света к далеким звездам.

Существуют ли практические возможности, естественно, в будущем, реализовать подобную идею?

Профессор. Вопрос затрагивает чрезвычайно сложную проблему, которую можно решить, если основываться не на фантазиях, а на научной базе, учитывающей будущие достижения технического прогресса чрезвычайно высокого уровня. Конечно, в настоящее время подобная задача кажется несбыточной мечтой. Но впечатляющие успехи в области космонавтики вселяют оптимистическую надежду. Рассмотрим принципиальные возможности полета со сверхсветовой скоростью. Как известно, тяга ракетных двигателей не зависит от скорости движения ракеты, а только от скорости вытекания газов из сопел двигателей и запасов топлива. О том, какие скорости полета могут быть достигнуты, можно судить по следующему примеру. Пусть у звездолета имеются фотонные ракетные двигатели, то есть фотоны вылетают конечная масса ракеты будет составлять 1 процент от начальной массы (такие соотношения бывают и у современных космических ракет), то ракета может достичь 4,6 скорости света. При перегрузке в одну единицу (космонавты будут воспринимать силу, равную силе веса на Земле) разгон ракеты до такой скорости будет продолжаться около четырех с половиной лет (здесь не учитывается сопротивление космической среды, которое при таких скоростях может оказаться значительным и опасным). Во всяком случае, полеты к далеким звездам в обозримый отрезок времени превращаются из фантастических гипотез в реально осуществимые проекты.

Автор. Кстати, здесь мы вовсе не будем первопроходцами в таком путешествии. Первыми были Данте и Беатриче, совершившие воспарение в «Рае» при помощи светового потока и со скоростью света.

Данте так передает свои ощущения от этого полета:

Я видел — солнцем загорелись дали Так мощно, что ни ливень, ни поток Таких озер вовек не расстилали.

Звук был так нов, и свет был так широк, Что я горел постигнуть их начало;

Столь острый пыл вовек меня не жег… А спустя пятьсот лет в путешествие навстречу несметным мирам с быстротой солнечных лучей Байрон отправил героев своей мистерии — Каина и Люцифера. «Лети со мной, как равный, — говорит дьявол Люцифер, двойник гетевского Мефистофеля, воплощение сомнений и дерзаний, — над бездною пространства — я открою тебе живую летопись миров прошедших, настоящих и грядущих».

И Каин отвечает ему:

…О дивный, Невыразимо дивный мир! И вы, Несметные, растущие без меры Громады звезд! Скажите, что такое И сами вы, и эта голубая Безбрежная воздушная пустыня, Где кружитесь вы в бешеном веселье… Но если бы мы вдруг оказались на чудо-корабле, оснащенном современной техникой и способном, преодолев световой барьер, легко превысить скорость света, — какие бы картины мироздания открылись бы перед нами?

Профессор. Попробуем представить, исходя из моей концепции световой теории и тороидальной модели фотона (см. выше). Сейчас усиленно разрабатываются и иные теории (в торсионной, в частности, допускаются любые сверхсветовые скорости). Но каким представится мир авторам новейших подходов, пусть они лучше расскажут сами. Итак, познакомимся с устройством разработанного мною (пусть пока воображаемого!) космического корабля. Его помещения оборудованы всеми средствами жизнеобеспечения, необходимыми для длительного космического перелета. Каждый агрегат, устройство, приспособление доведены здесь до совершенства. Запасы питания, которых хватит на многие годы, хранятся в герметичных холодильниках.

Автор. Прекрасно, но ведь не хлебом единым живет космонавт. Что ему придется делать в условиях длительного межзвездного полета?

Профессор. О, чего-чего, а работы и забот ему хватит. Один перечень так называемых штатных операций, которые придется выполнять ежедневно (если время измерять дневными сутками), занял бы объем целой поэмы. Правда, большинство этих операций будет выполняться с помощью автоматов и роботов, что существенно облегчит работу и исключит неритмичность ее выполнения. Не следует забывать, что у автоматических помощников электронная память и они не забывают о своих обязанностях.

Автор. Какие же обязанности будут важнейшими и наиболее сложными?

Профессор. Кроме жизнеобеспечения, к числу важнейших можно отнести работы по навигации космического корабля и управлению его полетом. Задачи навигации чрезвычайно ответственны. От их решения зависит не только точное и своевременное достижение намеченной цели, но и обеспечение безопасности полета: в космическом пространстве движутся многочисленные метеориты и другие тела, а также облака пыли, встреча с которыми может закончиться аварией или даже катастрофой. При околосветовых и сверхсветовых скоростях полета навигация будет осуществляться в основном в автоматическом режиме.

Многочисленные органы чувств корабля — датчики навигационной информации — способны воспринимать излучения от небесных тел в широком диапазоне частот. Обработка сигналов этих датчиков, выполняемая бортовыми вычислительными машинами, позволяет определить координаты местонахождения корабля и скорость движения относительно звездных ориентиров.

Основным ядром навигационного комплекса космического корабля явится автоматическая система для счисления пути относительно инерциального межзвездного пространства.

Автор. Управление движением звездолета, летящего быстрее скорости света, по-видимому, потребует решения новых технических проблем.

Профессор. Конечно, основная научно-техническая проблема связана с созданием ракетного фотонного двигателя, у которого реактивная сила тяги возникает при выбросе летящего потока вещества — светового потока. Мощные излучатели света, которыми располагает двигатель, создают давление света. Это давление, действуя на корабль, вызывает согласно закону Ньютона ускоренное его движение. В частности, если двигатель будет создавать ускорение, например, равное ускорению силы тяжести на Земле (9,8 м/сек2) в течение 9 месяцев, то корабль будет увеличивать скорость полета и достигнет скорости света. Работа фотонного двигателя обеспечивается мощным источником энергии, в качестве которого могут быть использованы ядерные установки. Управление фотонным двигателем и его ядерной установкой осуществляется системой автоматики, которая регулирует силу тяги двигателя, режимы работы ядерной установки, а также обеспечивает безопасность и надежность функционирования всего энергетического комплекса.

Автор. Но что же увидят космонавты? Ведь самое главное — это выполнение целевой задачи: изучение окружающего звездного мира и раскрытие тайны Вселенной. Конечно, на звездолете имеется много разнообразной научной аппаратуры, которая изучает физические характеристики космической среды, звезд и галактик.

Однако самый лучший способ познания Природы, свойственный человеку, все увидеть своими глазами. Итак, к окнам звездолета!

Профессор. При разгоне корабля с перегрузкой в одну единицу они будут чувствовать себя как на земной поверхности. Но вот скорость полета приближается к скорости света. Посмотрим, что произойдет со звездным миром. Удивительная картина! Звезды в передней полусфере, наблюдаемые в переднее окно кабины управления корабля, станут намного ярче, а цвет их — более синим и даже фиолетовым. Кроме того, они сгрудятся по направлению полета, образуя узорчатый звездный ковер. Мир видится как будто через линзу, которая фокусирует его в сжатое изображение (рис. 124). Другими словами, воочию видятся все те эффекты, которые происходят с потоками света в относительном движении. Наш корабль движется навстречу звездам, которые мы видим в передней полусфере, и скорость V его полета складывается со скоростью С1, излучаемого звездами. Вследствие этого за счет доплеровского эффекта происходит «голубое смещение» спектров излучения звезд: красный спектр переходит в оранжевый и желтый, голубой — в синий и фиолетовый и т. д.

Смещение звезд по направлению полета — не оптическое искажение окна нашего корабля, а проявления эффекта аберрации света. Наши глаза воспринимают изображения звезд в том направлении, по которому распространяется свет, то есть по направлению вектора результирующей скорости C1, составленного из суммы векторов скорости света относительно излучателя (звезды) и скорости полета корабля (на рис. 124 обозначены: 1, 2, 3 — видимые звезды; 11, 21, 31 — истинные положения звезд).

Автор. Обратим внимание на боковые области звездного неба относительно корабля:

звезды стали реже в этом пространстве, а их спектры почти не изменились. Но особенно впечатляющая картина сзади корабля: звезды не только разошлись относительно друг друга, но значительно покраснели и стали менее яркими. Многие из них, которые привычно наблюдались в небе, вообще исчезли и стали невидимыми.

Профессор. Здесь наблюдаются те же световые эффекты — доплеровский эффект и аберрация света, но они проявляются как бы с обратными знаками. Действительно, раз корабль удаляется от звезд, расположенных сзади, то доплеровский эффект вызывает красное смещение спектров излучений. Те звезды, у которых спектр излучений был близок к красному или оранжевому, за счет доплеровского эффекта становятся просто невидимыми для человеческого глаза. Если же посмотреть в окно через прибор, обеспечивающий инфракрасное зрение, то многие из этих звезд-невидимок можно вновь обнаружить.

Автор. Но вот наступает знаменательное, можно даже сказать, критическое событие полета: звездолет достигает скорости света и переходит на режим сверхсветового полета.

Интересно, что же увидят космонавты, наблюдая картины звездного мира при сверхсветовом полете?

Профессор. Посмотрите вначале (рис. 125) вперед по курсу, а затем в боковой и задней полусферах. В звездном мире случилось что-то невероятное: звезды сгрудились в одно ослепительное облако, по бокам относительно корабля они очень редки, а сзади — абсолютная темнота.

Автор. Подобные чудеса, пожалуй, нетрудно объяснить. Полет происходит быстрее света, поэтому сам свет, излучаемый звездами сзади, просто не догонит космический корабль.

Вследствие этого в задней полусфере и образуется абсолютная чернота космического пространства.

Профессор. Продолжу мысль: свет, излученный ранее, еще до начала полета, находится впереди звездолета, и следовательно, он просто догоняет фотоны и натыкается на них.

Вследствие этого чувствительные элементы (или глаза) позволяют увидеть эти звезды не сзади, а впереди корабля. Вот почему в переднем звездном облаке такая неразбериха: ведь мы видим одновременно всю массу звезд, находящихся как в передней (более яркие), так и в задней полусфере (значительно слабее по яркости). Такая накладка изображений значительно усложняет звездную навигацию корабля.

Автор. Но, кроме звезд, впереди корабля обнаруживается еще какое-то странное свечение неба. Что это такое?

Профессор. Космическое пространство заполнено весьма разреженной материей — атомами, ионами, электронами, фотонами и другими частицами. При полете со скоростью менее скорости света такие частицы сталкиваются с кораблем, вызывая при этом постепенное разрушение его поверхностной оболочки, наружного оборудования и смотровых стекол кабин корабля. Подобные столкновения регистрируются приборами в виде отдельных вспышек.

Но при скорости полета быстрее света частота встреч становится столь значительной, что для наблюдателя они сливаются в некоторый фон звездного неба.

Автор. Путешествуя вместе с нами в мире звезд, читатель, может быть, задает вопрос:

почему же он не видит картин прошлого.

Профессор. Картины земной жизни, проходившей в прошедшие времена, в виде потоков света, излученных материальными объектами, давно уже рассеялись и поглотились окружающей средой. Земная атмосфера поглощает значительную долю световой энергии, особенно в голубом и ультрафиолетовом спектрах. Кроме того, излучения предметов распространяются во все стороны веерообразно, и по мере удаления их видимый облик расплывается и слабеет. Таким образом, в межзвездном полете хотя и может встретиться какой-либо фотон — участник древних событий, но составить картину по нему не представляется возможным.

Автор. В такой странной и искаженной картине звездного мира путешественников подстерегают опасности: корабль летит с огромной скоростью, а небесные тела на самом деле никуда не исчезают и остаются на своих местах. Ведь, кроме видимых объектов, могут быть встречи и с «черными дырами», которые своим мощным гравитационным полем только «сосут Вселенную», притягивая к себе все материальное и не отдавая назад ничего, даже свет.

Профессор. Конечно, опасность сверхсветового полета чрезвычайно велика. Правда, известные еще до полета места нахождения небесных тел могут быть заложены в память бортовых ЭВМ. Однако встреча с таким «хищником», как черная дыра, вполне возможна.

Обнаружить приближение такого объекта можно с помощью системы гравиметров (рис. 126), размещенных на корабле, и специальных зондов-разведчиков, выпускаемых во время полета для изучения окружающего пространства. Поскольку «черная дыра» обладает мощным гравитационным полем, то силу его притяжения можно обнаружить, измеряя градиент этого поля с помощью системы гравиметров. Конечно, даже минуя такого «хищника», следует учитывать, что его гравитационное поле может изменить траекторию и скорость полета.

В ОБЪЯТИЯХ «ЧЕРНОЙ ДЫРЫ»

Да, действительно, «черным дырам» в последнее время часто посвящаются статьи в научных, научно-популярных и научно-фантастических изданиях. Что же они такое? Как известно, под «черными дырами» понимаются такие области пространства-времени, из которых ничто, даже свет, не может вырваться наружу, так как в них чрезвычайно сильно действует гравитация. Мысль о существовании столь экстравагантных звезд, поле тяготения которых сможет удерживать свет и делать саму звезду невидимой, высказывал еще Лаплас. Тогда эта гипотеза оказалась невостребованной. Настоящая мода на «черные дыры» возникла в 60-е годы нынешнего века на волне релятивистского бума. Появились различные конкурирующие теории «черных дыр». В них видели ключ к разгадке многих тайн Вселенной.

Особенно популярной стала тема воображаемых путешествий в окрестности «черных дыр»

и даже в самое их нутро. Разработано несколько математических моделей подобных в принципе невозможных путешествий (с чем согласны и сами разработчики «виртуальных» проектов), опубликовано множество статей и книг. Одно из типичных описаний, заимствованное из книги У. Кауфмана «Космические рубежи теории относительности» (М., 1981), позволяет проникнуть не только в умопомрачительный мир «черных дыр», но и в мир парадоксального мышления современных космологов-релятивистов.

Представим человека, падающего в «черную дыру», — так обычно начинаются описания невероятных мыслепутешествий.

Предположим, что он падает вниз ногами. Падение все время свободное, так что человек находится в состоянии невесомости. Однако при сближении с «черной дырой» он начинает ощущать нечто необычное, поскольку его ноги оказываются ближе к «черной дыре», чем голова.

Дело в том, что ноги будут падать быстрее головы. В результате «экспериментатор» станет вытягиваться в длинную тонкую нить. К моменту пересечения горизонта событий его длина может достичь сотни километров. Популяризатор осознает, что падение в «черную дыру» — занятие не из приятных, ибо еще задолго до того, как испытуемый приблизится к фотонной сфере, его тело будет разорвано приливными силами невероятной мощи.

Могут ли вообще возникать сами «черные дыры»? Не потребуется ли бесконечно длительный срок (с нашей точки зрения) для того, чтобы поверхность умирающей звезды достигла горизонта событий? И да, и нет! — считают теоретики.

Безусловно верно, что последние несколько атомов на поверхности коллапсирующей звезды никогда не уйдут за горизонт событий. Но дело не в этом. Ведь, согласно математическим расчетам, вся звезда становится практически «черной» уже спустя несколько тысячных секунды после начала коллапса. И при формировании горизонта событий можно считать, что почти вся звезда уже очутилась за горизонтом. Вещество под горизонтом событий очень быстро падает на сингулярность. На трехмерной диаграмме пространства-времени эта картина выглядит следующим образом (рис. 127).

Радиус горизонта событий часто называют шварцшильдовским радиусом (автор решения Шварцшильд). Как только необходимое количество вещества уйдет под шварцшильдовский радиус, образуется горизонт событий, и это вещество оказывается в ловушке, где оно коллапсирует до самой сингулярности. А несколько замешкавшихся атомов из внешних слоев умирающей звезды так и не смогут никогда перебраться под горизонт событий и обречены вечно парить над поверхностью со шварцшильдовским радиусом.

Чтобы лучше разобраться в структуре «черных дыр», представьте себе воображаемое путешествие на космическом корабле, оборудованном большими смотровыми иллюминаторами.

Используя такую «технику», можно узнать, что увидели бы бесстрашные астронавты, если бы они действительно отправились в путешествие к различным типам «черных дыр», в сами эти дыры и даже сквозь них.

Шварцшильдовские радиусы черных дыр, обладающих разными массами

Масса черной дыры — Шварцшильдовский радиус (радиус горизонта событий) 1 т — 13.10–15 ангстрем 106 т — 13.10–9 ангстрем 1012 т — 13.10–3 ангстрем 1015 т — 13 ангстрем 1 масса Земли — 0,8 см 1 масса Юпитера — 2,8 м 1 масса Солнца — 3 км 2 массы Солнца — 6 км 3 массы Солнца — 9 км 5 масс Солнца — 15 км 10 масс Солнца — 30 км 50 масс Солнца — 150 км 100 масс Солнца — 300 км 103 масс Солнца — 3103 км 106 масс Солнца — 10 световых секунд 109 масс Солнца — 2,8 свет. часов 1012 масс Солнца — 117 свет. дней 1015 масс Солнца — 320 свет. лет Вообразим космический корабль, показанный на рисунке 128. Он снабжен двумя большими иллюминаторами. Носовой иллюминатор смотрит прямо в центр «черной дыры», а кормовой — в противоположном направлении. Из каждого иллюминатора видна половина всего неба.

Космический корабль обладает очень мощными ракетными двигателями, позволяющими ему удерживаться на разных высотах над горизонтом событий. На борту корабля находятся два астронома, которые фотографируют с различных расстояний от черной дыры все, что им видно из иллюминаторов.

Для удобства астрономы выражают свое расстояние от «черной дыры» в шварцшильдовских радиусах, а не милях или километрах (шварцшильдовский радиус — это радиус горизонта событий). Чем массивнее «черная дыра», тем больше ее шварцшильдовский радиус.

В нижеприведенной таблице приведены значения шварцшильдовского радиуса «черных дыр», обладающих разными массами (рис. 129). (Следует принять во внимание, что поперечник горизонта событий «черной дыры» — это в точности удвоенная величина ее шварцшильдовского радиуса, а раз поперечник горизонта событий равен удвоенному шварцшильдовскому радиусу, то поперечник фотонной сферы — это утроенный шварцшильдовский радиус).

Путешествие двух астрономов на воображаемом космическом корабле начинается с того, что этому уникальному кораблю предоставляется возможность просто падать на «черную дыру»

вдоль ее радиуса. На разных этапах сближения с дырой космонавты включают мощные ракетные двигатели, которые мгновенно останавливают падение корабля. В эти моменты покоя астрономы делают два снимка — один из носового иллюминатора (вид в сторону «черной дыры»), а другой — из кормового (вид назад на Вселенную). Корабль останавливался пять раз, и всякий раз делались две фотографии. (На рис. 130 показано, где был космический корабль относительно «черной дыры» в моменты получения снимков.) Полученные фотоснимки, согласно теоретическим расчетам, должны выглядеть следующим образом (рис. 131).

Фото А (вид издалека от черной дыры). Расстояние от «черной дыры» равно многим шварцшильдовским радиусам. «Черная дыра» выглядит отсюда как маленькое черное пятнышко в центре поля зрения носового иллюминатора.

Фото Б (вид с расстояния 5 шварцшильдовских радиусов). При взгляде с 5 шварцшильдовских радиусов угловой поперечник «черной дыры» составляет около 46°; она занимает центральную часть поля зрения носового иллюминатора. Дали Вселенной все еще видны в кормовой иллюминатор, хотя там уже заметны некоторые искажения.

Фото В (вид с расстояния 2 шварцшильдовских радиусов). При взгляде с 2 шварцшильдовских радиусов угловой поперечник «черной дыры» достигает 136°, и она закрывает большую часть поля зрения носового иллюминатора. Вид в кормовом иллюминаторе еще более искажен, чем на фото Б.



Pages:     | 1 |   ...   | 4 | 5 || 7 |
Похожие работы:

«Кадомская Марина Петровна учитель истории и обществознания Муниципальное бюджетное общеобразовательное учреждение Сосновская средняя общеобразовательная школа №2 р.п.Сосновка Тамбовская область ПРОБЛЕМЫ П...»

«Мария Гимбутас Славяне. Сыны Перуна Издательский текст http://www.litres.ru/pages/biblio_book/?art=153355 Славяне. Сыны Перуна: Центрполиграф; М.; 2010 ISBN 978-5-9524-5045-5 Аннотация Всемирно известн...»

«Павловский Алексей Игоревич СУЩНОСТЬ РЕАЛЬНОСТИ И ПРЕДМЕТНОСТЬ ОНТОЛОГИИ: ОБОСНОВАНИЕ ФЕНОМЕНАЛИЗМА Статья обосновывает феноменалистический подход к описанию бытия, необходимость и достаточность ограничить осмысление бытия рамками нашего представления. Рассматривая р...»

«УДК 821.111-053.6(73) ББК 84(7Сое)-44 Р83 Elizabeth Rudnick MALEFICENT Copyright © 2014 Disney Enterprises, Inc. Adapted by Elizabeth Rudnick Based on the screenplay by Linda Woolverton Executive Producers Angelina Jolie Don Hahn Pala...»

«Чудесное исцеление в христианстве – разоблачение. Часть 1 из 2: Что такое чудесное исцеление? Описание: В этой статье мы попытаемся рассказать о понятии чудесного исцеления в христианстве, его месте в истории и проведем разницу между христианским и исламским понятием о чуде. Авторство: Айша Стейс...»

«Клуб Краевед" при МУ "Центральная библиотека МОГО "Ухта" Отдел краеведения Анализ деятельности ухтинского городского клуба "Краевед" за 2015 г. Основная цель работы городского клуба "Краевед" в 2015 г. – это продолжение научно-исследовательской работы по истории г. Ухты, Республики Коми и их роли в освоении Европейского Север...»

«ИМПЕРАТОРШГО С.-ПЕТЕРБУРГСКАГО УНИВЕРСИТЕТА Г. З ПВЮПЛВН Ш —84 Щ РЛ Ш Г ГД А ЕУ ООИУ З Р 1 Д П А О ОА Л м (Л. ПГИЛОЖ Ш ЯМ И. "" С.-ПЕТЕРБУРГЪ. История Санкт-Петербургского университета.8 7 4 в виртуальном пространстве http://history.museums.spbu.ru/ История Санкт-Петербургского униве...»

«Ученые записки Таврического национального университета им. В. И. Вернадского Серия "Исторические науки". Том 27 (66), № 3. 2014 г. С. 53–57. УДК 72+75(092)+(477.75) КРЫМСКИЙ УНИВЕРСИТЕТ В 20-Х ГОДАХ XX СТОЛЕТИ...»

«вропейским союзом Неофици иальный пе еревод INO OGATE, пр рограммы финансир руемой Евр м Годоовой вопрос в сник по пр рироддному газу 2013 года c истори ическими измене ениями Июль 2014 г. И К докуме ентаци...»

«Философия “всеединства” B.C. Соловьева В одной из своих первых публичных лекций “ Исторические дела философии” В.С.Соловьев (1853—1900) назвал первоначальной философской интуицией провозглашение “нового, неслыханного слова: все есть одно”. Следовательно, обособившееся, ра...»

«ГРАЖДАНСКОЕ, ПРЕДПРИНИМАТЕЛЬСКОЕ И ДОГОВОРНОЕ ПРАВО УДК 341.1/8 ПРОБЛЕМА СООТНОШЕНИЯ ЧАСТНОГО И ПУБЛИЧНОГО ПРАВА В ТРУДАХ К.Д. КАВЕЛИНА Лариса Михайловна Зейналова, канд. истор. наук, доц., заведующая кафедрой теории и истории государства...»

«КОНЦЕПЦИЯ РАЗВИТИЯ ГОСУДАРСТВЕННОГО БЮДЖЕТНОГО УЧРЕЖДЕНИЯ ГОРОДА МОСКВЫ "БИБЛИОТЕКА-ЧИТАЛЬНЯ ИМ.И.ТУРГЕНЕВА" ПО АДРЕСУ: БОБРОВ ПЕР., Д.6 СТР. 1, 2, 3 НА 2012-2016 ГОДЫ Из истории Библиотеки-читальни им.И.С.Тургенева I. (1885 – 2012 гг.) Читальня им. И.С. Тургенева была открыта в...»

«Актива е Ве с т и в ны Позити Выпуск №2 31.10.2010.Не только мы собираем газету, но и газета В этом выпуске: собирает нас! Историческая 1 Пресс-центр гимназии веха Посвящение в 1 гимназисты Историческая веха Происхожде1 ние российской Город не моринном Симбирске шедших в историю гимназии жет существовать б...»

«ВЫПУСК 6 12 июня наша страна отмечает важный государственный праздник – День России. ВЫПУСК 6 12 июня 1991 году состоялись первые в истории страны всенародные открытые выборы президента, на котор...»

«НАУЧНЫЕ ВЕДОМОСТИ Серия История.Политология' 2016 № 1 (222). Выпуск 37 73 АКТУАЛЬНЫЕ ПРОБЛЕМЫ ОТЕЧЕСТВЕННОЙ ИСТОРИИ У Д К 90 2.3 НАПРАВЛЕНИЯ КОМПЛЕКСНЫХ ИССЛЕДОВАНИЙ ПАЛЕОЛИТИЧЕСКИХ ПАМЯТНИКОВ В ДИВНОГОРЬЕ1 LINES OF MULTIDISCIPLINARY STUDIES OF PALAEOLITHIC SITES IN DIVNOGOR’YE А.Н. Бессуднов, А.А. Бессуднов A....»

«ПОЯСНИТЕЛЬНАЯ ЗАПИСКА Рабочая программа предназначена для изучения истории в основной школе в 7 классе. Программа составлена на основе Федерального компонента государственного стандарта основного (общего) обра...»

«РОССЕЛЬХОЗНАДЗОР ИНФОРМАЦИОННО-АНАЛИТИЧЕСКИЙ ЦЕНТР ЭПИЗООТИЧЕСКАЯ СИТУАЦИЯ В СТРАНАХ МИРА №159 07.08.14 Официальная Литва – Африканская чума свиней информация: МЭБ Комментарий ИАЦ: регистрация вспышек АЧС среди домашних и диких свиней на территории Литвы по официальной информации МЭБ на 07.08.2014...»

«Санкт-Петербургский Российский государственный Научно-образовательное государственный университет педагогический университет культурологическое им. А.И. Герцена общество Научный совет Русс...»

«"Свободная мысль".-2010.-№2 (1609).-С.27-40. КЫРГЫЗСТАН: СБЫЛИСЬ ЛИ ОЖИДАНИЯ? Аскар Акаев, первый президент Кыргызстана, иностранный член РАН, профессор. Оценка важных событий их непосредственными участниками одно из самых ценных исторических свидетельств. Разумеется, оно вряд ли беспристрастно, но наверняка сод...»

«RU 2 507 241 C2 (19) (11) (13) РОССИЙСКАЯ ФЕДЕРАЦИЯ (51) МПК C10L 5/00 (2006.01) C10L 5/14 (2006.01) C10L 5/36 (2006.01) C10L 5/44 (2006.01) ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ (12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ (21)(22) Заявка: 2012108893/04, 07.03.2012...»

«72 ИЗ ИСТОРИИ КУЛЬТУРЫ И ПИСЬМЕННОСТИ "Житие Богородицы": происхождение и языковые особенности славянских переводов ©Д В. СОСНИЦКАЯ Житие Богородицы переводное византийское произведение, составленное Епифанием,...»

«22 Мост к современности. О стилевом курсе гармонии Григорий ЛЫЖОВ МОСТ К СОВРЕМЕННОСТИ. О СТИЛЕВОМ КУРСЕ ГАРМОНИИ Едва ли не самое существенное из того, что произошло в последние полвека с отечественной теорией музыки, и с наукой о гармонии в частности, — это ее историзаци...»

«Александр Павлович Горкин Энциклопедия "Искусство". Часть 4. Р-Я (с иллюстрациями) Серия "Современная иллюстрированная энциклопедия. Искусство", книга 4 Текст предоставлен издательством "РОСМЭН" http://www.litres.ru/pages/biblio_book/?art=165813 Искусство: Энцикло...»

«European Researcher, 2012, Vol.(33), № 11-1 07.00.00 Historical sciences and archeology 07.00.00 Исторические науки и археология UDC 94 Private Life of Soviet Man during Wartime in Documentary Witnesses of Regional Record Vault * Tat'yana P. Khlynina Institute for Social and Economic Research and Humanities of the South Scien...»








 
2017 www.kniga.lib-i.ru - «Бесплатная электронная библиотека - онлайн материалы»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.